# CamPerform CP80-4-M/C-500 CoaxPress Camera



# **User Manual**

Ref. 1887-SU-01-A



## **Contents**

| Kevi | sion                                                                              | 3               |
|------|-----------------------------------------------------------------------------------|-----------------|
| Gene | eral                                                                              | 4               |
|      | Declaration of conformity                                                         | 4               |
|      | RoHS compliance                                                                   | 4               |
|      | Scope of delivery                                                                 | 5               |
|      | Optronis customer service<br>Remark, Attention                                    | 6               |
| Droo |                                                                                   |                 |
| Prec | cautions  Camera Power                                                            | 6               |
|      | Environmental Conditions                                                          | 6               |
|      | General Precautions                                                               | 7               |
| Cam  | nera                                                                              | 8               |
|      | Electrical Interface                                                              | g               |
|      | Auxiliary (Aux.) connector pinout                                                 | 9<br>9<br>12    |
|      | Camera Power                                                                      |                 |
|      | Indicator Lamp (LED)                                                              | 13              |
| _    | CoaxPress Data Channels                                                           | 13              |
| Lens | s mount and handling                                                              | 14              |
|      | Nikon F-Mount adapter<br>C-Mount adapter                                          | 14<br>16        |
| I    | ·                                                                                 |                 |
| ımpc | ortant features Frame format                                                      | <b>16</b><br>16 |
|      | Minimum Frame rate (@ internal synchronisation)                                   | 16              |
|      | Maximum Frame rate (@ internal synchronisation)                                   | 16              |
|      | Max. Frame Rate Examples:                                                         | 18              |
|      | Frame Rate (@ external synchronisation)                                           | 19              |
| Tech | nnical Data                                                                       | 20              |
|      | General                                                                           | 20              |
|      | Spectral Response / Transmittance                                                 | 21              |
|      | Mechanical Dimensions F-Mount Lens (/CM)                                          | 22              |
|      | Synchronisation Input schematics                                                  | 22<br>24        |
|      | Synchronisation Output schematics                                                 | 24              |
|      | Internal Synchronisation Timing                                                   | 25              |
|      | Synchronisation Output                                                            | 25              |
|      | External Synchronisation Timing                                                   | 26              |
|      | Synchronisation Input "level detection"  Synchronisation Output "level detection" | 26              |
| _    | ·                                                                                 | 26              |
| Foca | al Length Calculation                                                             | 27              |
|      | Full Sensor Resolution Reduced Sensor Resolution                                  | 27<br>27        |
|      | Distance Washer                                                                   | 29              |
| Cam  | nera firmware update                                                              | 30              |
|      | ·                                                                                 |                 |
| ∪am  | nera mapping                                                                      | 32              |

Ref. 1887-SU-01-A



Gen<i>Cam 34



## Revision

| Cameramodel      | Date       | Description   |
|------------------|------------|---------------|
| CP80-4-M/C-500   | 30.04.2013 | Firmware 6.01 |
| SNr. 1887-ST-xxx |            |               |
|                  |            |               |



#### **General**

#### **Declaration of conformity**

Manufacturer: Optronis GmbH

Address: Honsellstr. 8, 77694 Kehl, Germany

We certify and declare under our sole responsibility that the

following apparatus

Product: CP80-4-M-500

CP80-4-C-500

conform with the essential requirements of the EMC Directive 2004/108/EC, based on the following specifications applied:

Specifications: EN 61000-6-3 Emission

EN 61000-6-1 Immunity

Kehl, 30.04.2013

Optronis GmbH

Dr. Patrick Summ

**Managing Director** 

#### **RoHS** compliance



CamPerform CP80-4-M/C-500 cameras are Pb free manufactured.



#### Scope of delivery

#### CP80-4-M/C-500 CoaxPress camera

Options: /C: Color sensor (Bayer Pattern)

(IR Cutoff Filter, Specification: 1830-SS-10)

/M: Monochrome sensor

Lens mount: /CM: CMount

/FM: FMount

/FMG: FMount for Nikon G-Lens series

CoaxPress: up to 6,25GBit/channel, 4 channels

Synchronisation Adapter cable

Programming cable (USB2) for firmware update

User Manual (CD-ROM)

#### **Optronis customer service**

Optronis GmbH

Honsellstrasse 8

77694 Kehl

Germany

Tel: +49 (0) 7851 9126 0 Fax: +49 (0) 7851 9126 10 E-mail: <u>info@optronis.com</u>

For any questions or problems, please do not hesitate to ask our customer service. Please prepare the following information:

- Camera type: CP80-4-M/C-500
- Serial-Number: see label at the bottom side of the camera
- Frame Grabber
- Operating System (Windows XP/Vista/32bit/64bit ...)
- Short description of the problem



#### Remark, Attention

This user manual is compliant with the firmware version v.6.01 of the camera.

The following signs are used in the user manual



## Remarks and additional information



## **Attention**

#### **Precautions**

#### **Camera Power**

Please use Power over CoaxPress or as an option the CP80-4-M/C-500 camera power supply (not included in shipment).

#### **Environmental Conditions**

Temperature range during operation:  $< +40^{\circ}$  (ambi ent temperature)

 $> 0^{\circ}$  (ambient temperature)

Humidity during operation < 80% non-condensed



At high ambient or housing temperatures the camera lifetime will be reduced. Avoid camera operation beyond temperature limits. Please ensure, that the housing temperature will be kept as low as possible by additional heatsinks.



#### **General Precautions**

Read the user manual carefully before using the camera.

Do not orientate the optical input of the camera to direct sunlight.

Keep the camera free protected from dirt, dust, grease and water.

Make sure that all the connecting cables are in good condition. Defective cables have to be replaced.

Always unplug the camera before cleaning it. Do not use cleaning liquids or sprays. Instead, use a dry and soft duster.



There are no serviceable parts inside the camera. Do not open the housing of the camera.

Warranty becomes void if the camera housing is opened.

CamRecord CL4000CXP Ref. 1887-SU-01-A Page 7




## Camera



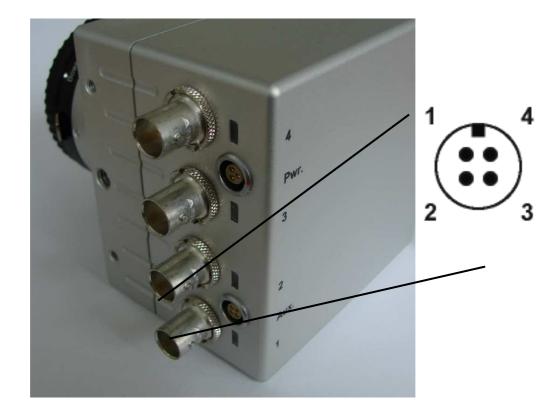
1: Camera housing 2: Mounting holes 2x M4x6mm 1x ¼ ``x6mm

3: Lens mount (Nikon-F) 4: Nikon lens

5: electrical interface (right side) 6: Mounting holes 4x M4x6mm






1: CoaxPress Channel

3: Auxiliary Connector

2: Power Connector

4: Indicator Lamp (LED)

#### **Electrical Interface**



## Auxiliary (Aux.) connector pinout

| Auxiliary (Aux.) connector pinout |             |                                |  |
|-----------------------------------|-------------|--------------------------------|--|
| Pin<br>Nr.                        | Description |                                |  |
|                                   |             | External Synchronisation Input |  |
| 1                                 | Sync. In    | TTL level: <0,8Volt (low)      |  |
|                                   |             | > 2 Volt (high)                |  |
| 2                                 | reserved    | -                              |  |



| 3 | GND       | Sync. Ground                    |
|---|-----------|---------------------------------|
|   |           | External Synchronisation Output |
| 4 | Sync. Out | (TTL level @ high impedance,    |
|   |           | 0 to 2 Volt @ 50 Ohms)          |



To operate SyncIn correctly, a SyncIn driver circuit has to be used.

Minimum Sink Current (TTL Low Level) of the SyncIn Driver has to be 5mA. At 5mA Sink Current the input level at the SyncIn camera input drops below 0,8Volts.

Source Current (TTL High Level).of the SyncIn Driver is neglible (0mA)

Easiest driver circuit is a Transistor working in open collector configuration.



SyncIn input voltage limit ranges from -5 Volts to +30 Volts. Voltages applied beyond these limits may damage the SyncIn Input.



SyncOut has a built in 50 Ohm driver.

At 50 Ohm termination, the driver voltage is in between 0 (low level) to ~2 Volts (high level). At high impedance termination, the driver voltage is in between 0 (low level) to ~4 Volts (high level).



SyncOut voltage limit ranges from 0 Volt to + 5 Volts. Voltages applied beyond these limits may damage the SyncOut Output.





The Auxiliary connector may also be used to update the firmware of the camera. Please use the USB2 programming adapter cable.



#### **Camera Power**

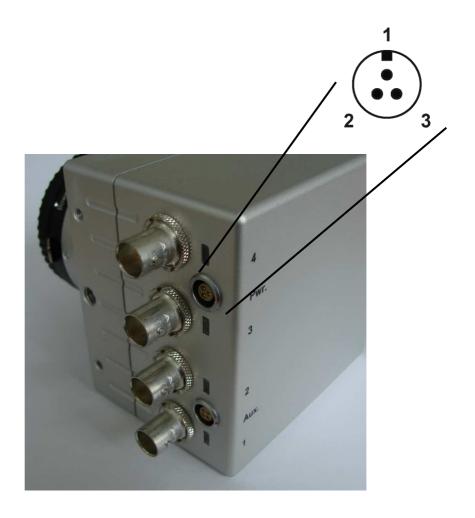



Figure: CP80-4-M/C-500 side view

Camera (Pwr.) connector type: Lemo EGG.0B.303CLL

Cable Connector: Lemo FGG0B303.CLAD56Z

| Power (Pwr.) connector pinout |             |                                |  |  |
|-------------------------------|-------------|--------------------------------|--|--|
| Pin<br>Nr.                    | Description |                                |  |  |
|                               |             | DC Power                       |  |  |
| 1                             | VCC         | +24Volt +/-5% (Ripple < 200mV) |  |  |
|                               |             | Inrush Current ~0,6A           |  |  |
| 2                             | GND         | Power Ground                   |  |  |
| 3                             | reserved    | -                              |  |  |



Alternatively Power over CoaxPress (PoCXP) can be used.



## **Indicator Lamp (LED)**

| State                                                              | Indication                        |
|--------------------------------------------------------------------|-----------------------------------|
| No power                                                           | Off                               |
| System booting                                                     | Solid orange                      |
| Powered, but nothing connected                                     | Slow pulse red                    |
| (only for power over power connector)                              |                                   |
| Link detection in progress,                                        | Fast flash green                  |
| PoCXP active                                                       |                                   |
| Linkt detection in progress,                                       | Fast flash orange                 |
| PoCXP not in use                                                   |                                   |
| Camera / Grabber incompatible,                                     | Slow flash alternate red / green  |
| PoCXP active                                                       |                                   |
| Camera / Grabber incompatible,                                     | Slow flash alternate red / orange |
| PoCXP not in use                                                   |                                   |
| Camera connected, but no data being transferred                    | Slow pulse green                  |
| Camera connected, waiting for event (e.g. trigger, exposure pulse) | Slow pulse orange                 |
| Camera connected, transferring frames                              | Solid green                       |
| Error during data transfer                                         | 500ms red pulse                   |
| System error                                                       | Fast flash red                    |

#### **CoaxPress Data Channels**

To operate the camera, all 4 CoaxPress Channels (Labeling: BNC 4x) have to be used. Channel 1 is Master link. Channel 2, Channel 3 and Channel 4 are Extension links. Channel 1 uses Power over CoaxPress (PoCXP). Speeds of the Downlink are 6,25Gbit/s, 5,00Gbit/s or 3,125Gbit/s depending on the speed transfer capabilities of the frame grabber.

CamRecord CL4000CXP Ref. 1887-SU-01-A Page 13



## Lens mount and handling

#### **Nikon F-Mount adapter**

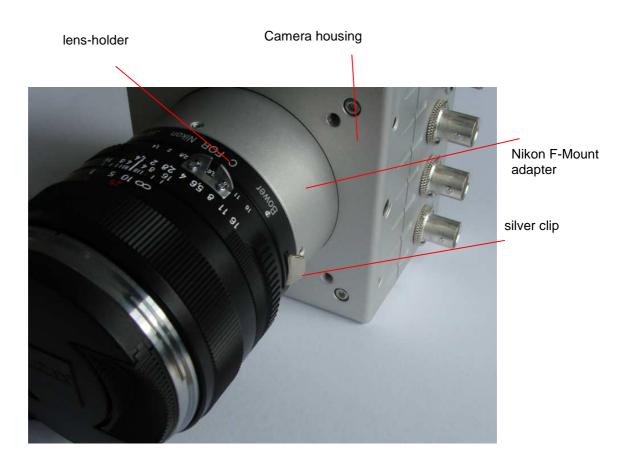



Figure: Camera with Nikon F-Mount adapter

To mount the lens, it has to be positioned on the lens-holder in a way, that the back surface of the lens is completely attached to the surface of the lens-holder.


The lens-reference has to be positioned in face to the lens-holder reference as shown in the figure below. Then, the lens has to be turned anti-clockwise until the silver clip on the lens-holder locks.

CamRecord CL4000CXP Ref. 1887-SU-01-A Page 14









lens locked

To unmount the lens, pull back first the silver clip in order to unlock the lens as shown below. Then (the silver clip has still to be pulled back) turn the lens clockwise until the lens is unmounted completely.



pull silver clip back



#### **C-Mount adapter**

To mount the C-Mount lens, unscrew the protective cover anti-clockwise and mount the C-Mount lens into the lens holder.

To unmount the lens, unscrew the C-Mount lens anti-clockwise.

## **Important features**

The CamPerform CP80-4-M/C-500 CoaxPress cameras are a high resolution, high frame rate CMOS area scan camera that are designed for industrial use. The image sensor and the camera offer exceptional high performance:

- excellent image quality
- excellent sensitivity
- low noise
- monochrome and color
- internal and external synchronisation
- Region of Interest (ROI)

#### Frame format

The Frame format (frame resolution) of the camera is 2304 active Pixels in horizontal (x) direction and 1720 active Pixels in vertical (y) direction at full resolution. The frame format can be reduced by factor of 128 Pixel in horizontal direction and factor of 4 Pixel in vertical direction.

The frame format can be reduced by selecting a region of interest (ROI).

#### Minimum Frame rate (@ internal synchronisation)

Minimum frame rate is limited to 50 fps in free run mode.

#### Maximum Frame rate (@ internal synchronisation)

The minimum frame interval (maximum frame rate) that can be reached by the camera internal synchronisation mode depends on the CoaxPress Speed (Bit Rate).

| Compliance | Bit Rate (Gbps) | Maximum frame | Discovery Rate |
|------------|-----------------|---------------|----------------|
| labeling   |                 | rate          |                |

CamRecord CL4000CXP Ref. 1887-SU-01-A Page 16



| CXP6 | 6,250 | 506 | No  |
|------|-------|-----|-----|
| CXP5 | 5,000 | 452 | No  |
| CXP3 | 3,125 | 253 | Yes |

Figure: Supported high speed link bit rates



## **Max. Frame Rate Examples:**

| CooyDroop Joholing | Pixel resolution x | Pixel resolution y | Max. Frame Rate |
|--------------------|--------------------|--------------------|-----------------|
| CoaxPress labeling | (Pixel)            | (Pixel)            | (fps)           |
| CXP6, BNC 4x       | 2304               | 1720               | 500             |
| CXP6, BNC 4x       | 2048               | 1536               | 560             |
| CXP6, BNC 4x       | 2048               | 1152               | 750             |
| CXP6, BNC 4x       | 1920               | 1080               | 800             |
| CXP6, BNC 4x       | 2304               | 4                  | 87000           |
| CXP5, BNC 4x       | 2304               | 1720               | 446             |
| CXP5, BNC 4x       | 2048               | 1536               | 498             |
| CXP5, BNC 4x       | 2048               | 1152               | 667             |
| CXP5, BNC 4x       | 1920               | 1080               | 712             |
| CXP5, BNC 4x       | 2304               | 4                  | 77430           |
| CXP3, BNC 4x       | 2304               | 1720               | 250             |
| CXP3, BNC 4x       | 2048               | 1536               | 280             |
| CXP3, BNC 4x       | 2048               | 1152               | 375             |
| CXP3, BNC 4x       | 1920               | 1080               | 400             |
| CXP3, BNC 4x       | 2304               | 4                  | 43500           |

(Max. Frame Rate values are rounded values)

#### Calculation of Maximum Frame Rate at CXP6 BNC 4x:

Ref. 1887-SU-01-A

readout time (us) = (151/132)\*(SizeY+6) (SizeY = number of lines, Pixel resolution y)

Max. Framerate = 1000000/readout time(us)

#### **Calculation of Maximum Exposure Time:**

expo max = readout time-4\*151/132



#### Frame Rate (@ external synchronisation)

For external synchronisation please apply a TTL signal to the Sync In and Sync Out BNC adapter of the adapter cable (scope of delivery). External synchronisation may be operated in level detection mode. Please see the external synchronisation timing for more information about resulting frame rates and exposure times.

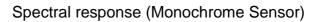
Alternatively SyncIn can be applied directly between Pin 1 and Pin 3 on the camera power (Pwr.) connector, Sync Out between Pin 4 and Pin 3. The synchronisation output can be used to synchronise other devices as e.g. additional cameras or external light flashes.

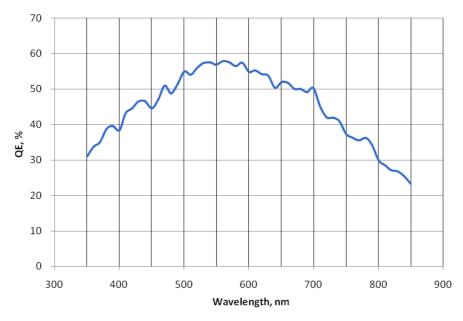


The External synchronisation frame rate range can reach any value between 50 fps and maximum Frame Rate @ internal synchronisation.



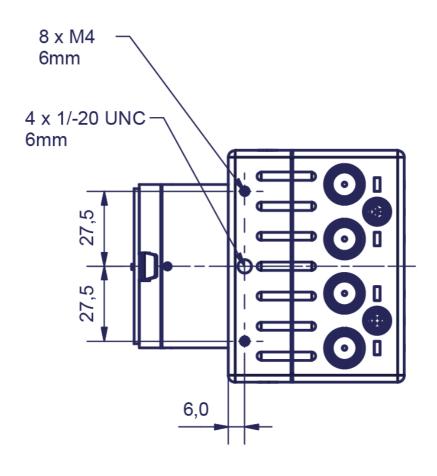
## **Technical Data**

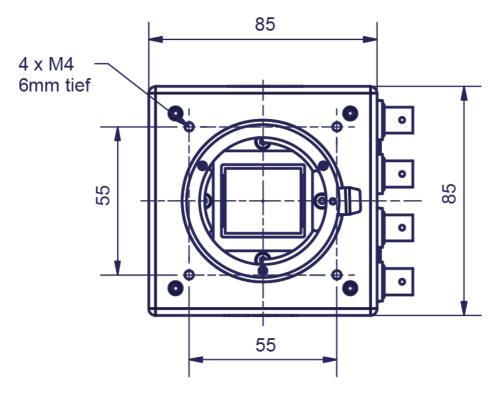

#### General


| Power Source          | + 24 Volt +/. 5% DC           |
|-----------------------|-------------------------------|
|                       | < 200mV ripple                |
|                       | Alternatively PoCXP           |
| Power                 | approx. 10 Watt               |
| Pixel Number          | 1304 x 1720                   |
| Pixel size            | 7 μm x 7 μm                   |
| Acitve area           | 16,13 mm x 12,04 mm           |
| Sensor responsitivity | 9000 bits/lux.s               |
| Sensor S/N ratio      | 48 dB (Linear)                |
| Shutter               | Global, efficiency ~99,9%     |
| Minimum Ambient       | 0 °C                          |
| Temperature           |                               |
| Maximum Ambient       | + 40 ℃                        |
| Temperature           |                               |
| Humidity              | < 80% relative, non-condensed |
| Interface             | CoaxPress BNC 4x              |
|                       | CXP6, CXP5, CXP3              |
| Uplink                | Over CoaxPress                |
| Video interface       | CoaxPress                     |
|                       |                               |
| Size                  | 145 mm x 95 mm x 78,5 mm      |
|                       | (F-Mount)                     |
| Weight                | approx. 1050g without lens    |

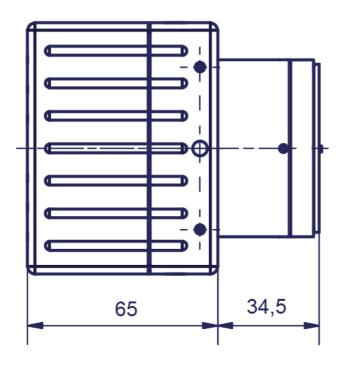
Ref. 1887-SU-01-A




## **Spectral Response / Transmittance**






## Mechanical Dimensions F-Mount Lens (/CM)









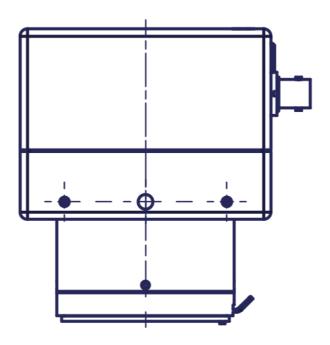



Figure: Side View (all dimensions in mm)

Screw threads in socket: M4 min. 6 mm depth

1 x  $\frac{1}{4}$  `` min. 6 mm depth (in the middle)



## **Synchronisation Input schematics**

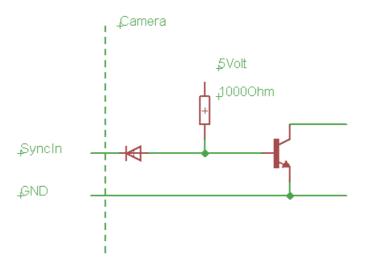



Figure: SyncIn Schematics (for illustration only)

## **Synchronisation Output schematics**

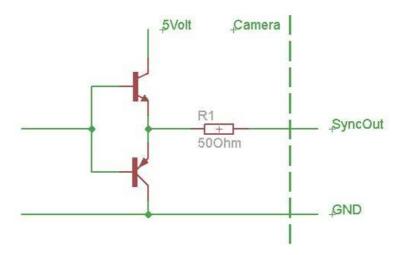
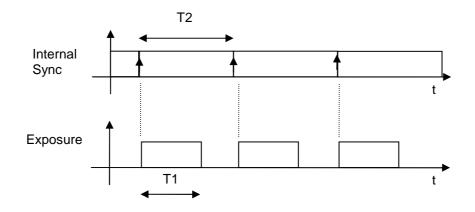




Figure: SyncOut Schematics (for illustration only)



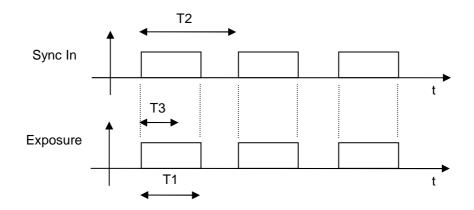
## **Internal Synchronisation Timing**



T1: Exposure time, selected by software

T2: Frame Interval (1/Frame Rate), selected by software

#### **Synchronisation Output**


Logic 1 during Exposure Time (T1)



# External Synchronisation Timing

#### Synchronisation Input "level detection"

positive level:



Sync In rising level to Exposure Delay: ~6,0usec +/- 530nsec typical

T1: Exposure time

T2: 1/Frame Rate

T3: 1/Maximum Frame Rate (limited by readout of the sensor) depends on frame format and Camera Link® mode

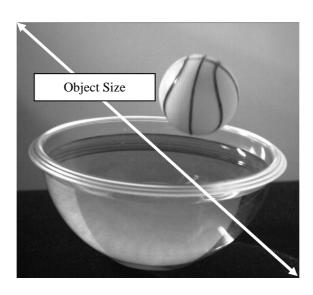
| <u>T1&gt;T3:</u>                  | <u>T1<t3:< u=""></t3:<></u>    |
|-----------------------------------|--------------------------------|
| T1 max: : no limit                | T1 max: : no limit             |
| < 1sec recommended due to shutter | < 1sec recommended due to      |
| T2 max: no limit                  | shutter efficiency and thermal |
| < 1sec recommended due to shutter | noise                          |
| efficiency and thermal noise      | T2 max: no limit               |
| T2 min: T1                        | < 1sec recommended due to      |
|                                   | shutter efficiency and thermal |
|                                   | noise                          |
|                                   | T2 min: T3                     |

#### Synchronisation Output "level detection"

Logic 1 during Exposure Time (T1)



## **Focal Length Calculation**


#### **Full Sensor Resolution**

The required focal length of the lens at full sensor resolution (2304 x 1720 Pixel) is calculated as follows:

Focal Length [mm] = 
$$\frac{A}{1 + \frac{B}{20,126}}$$

A: Distance from lens to object in mm

B: Size of the object in mm



#### **Example:**

A: Distance from lens to object = 300 mm

B: Object Size = 100 mm

calculated focal length = (300 : (1 + (100 : 20,126))) = 50 mm

selected focal length = 50 mm

#### **Reduced Sensor Resolution**

At reduced sensor resolutions (e.g. 1920 horizontal x 1080 vertical pixels) the focal length is calculated as follows:

Sensor Size  $[mm] = 0.007 \cdot \sqrt{C^2 + D^2}$ 



Focal Length [mm] = 
$$\frac{A}{1 + \frac{B}{Sensor\ Size\ [mm]}}$$

A: Distance from lens to object in mm

B: Object size in mm

C: Number of horizontal pixels

D: Number of vertical pixels

#### **Example:**

C: Number of horizontal pixels = 1920

D: Number of vertical pixels = 1080

Sensor Size 
$$[mm] = 0.007 \cdot \sqrt{1920^2 + 1080^2} = 15.4$$

A: Distance from lens to object = 300 mm

B: Object size = 100 mm

calculated focal length = (300 : (1 + (100 : 15,4))) = 40 mm

when a lens with focal length of 35 mm has to be used, and the object size has to be kept at 100 mm, the distance from lens to object has to be changed as follows:

Distance to Object 
$$[mm] = Focal\ Length \cdot \left(1 + \frac{Object\ Size}{Sensor\ Size}\right)$$

at a focal length of 35mm, an object size of 100mm and a sensor size of 15,4mm the new distance from lens to object is calculated as:

$$35 \cdot (1 + (100 : 15,4)) = 262 \text{ mm}$$

The distance from lens to object has to be reduced from 300mm to 262mm.

Vice versa, when the distance from lens to object has to be reduced, the focus of the lens will come to its limit. and the required magnification factor can no more performed by the lens itself. In this case, a distance washer has to be placed between the lens interface of the camera and the lens.



#### **Distance Washer**

The length of the distance washer can be calculated as follows:

$$Length \ of \ the \ Distance \ Washer \ [mm] = Focal \ Length \cdot \frac{Sensor \ Size}{Object \ Size}$$

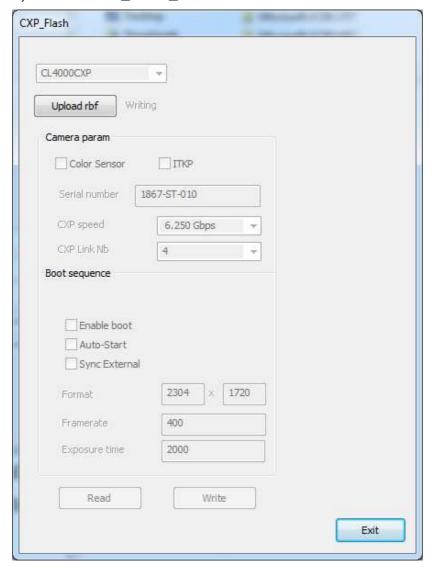
#### **Example:**

Sensor Size as calculated above = 15,4mm required Object Size=15,4mm (The required magnification factor is = 1 : 1) focal length of the lens = 35mm

calculated Length of the Distance Washer =  $35 \cdot (15,4 : 15,4) = 35$ mm



## Camera firmware update


Camera firmware update is available through the USB programming cable and the CXP\_Flash\_Consumer software (located in the CXPFlash\_Setup folder) delivered with the camera.

Please go through the following steps:

- 1) Switch OFF camera
- 2) Connect USB cable to PC and camera Aux. input.
- 3) Install USB driver on PC if it is not already done.

To install USB driver, launch USB\_Setup.exe (located in the CXPFlash\_Setup folder) and then Reboot PC.

- 4) Switch ON camera
- 5) Launch CXP\_Flash\_Consumer.exe



Click on "Upload rbf" and select the file cxp7\_xxx.rbf.

Wait until finished.



- 6) Click on Exit.
- 7) Switch OFF camera and switch ON camera.



# Camera mapping

Camera mapping for firmware version >=v4.1

| 0x6000       | Width_Max/Width                                         | R/W                                               | 4             |  |
|--------------|---------------------------------------------------------|---------------------------------------------------|---------------|--|
| Bits [3116]  | Maximal frame width                                     |                                                   |               |  |
| Bits [150]   | Current frame width (must be a multiple of 128)         |                                                   |               |  |
|              |                                                         |                                                   |               |  |
| 0x60D0       | OffsetX                                                 | R/W                                               | 4             |  |
| Bits [150]   | Frame Horizontal Offset (must be a mul                  | tiple of 16)                                      |               |  |
|              |                                                         |                                                   |               |  |
| 0x6004       | Height_Max/Height                                       | R/W                                               | 4             |  |
| Bits [3116]  | Maximal frame height                                    |                                                   |               |  |
| Bits [150]   | current frame height (must be a multi                   | ple of 4)                                         |               |  |
|              |                                                         |                                                   |               |  |
| 0x60D4       | OffsetY                                                 | R/W                                               | 4             |  |
| Bits [150]   | Frame Vertical Offset (must be a mult                   | tiple of 4)                                       |               |  |
|              |                                                         |                                                   |               |  |
| 0x60D8       | Special Modes                                           | R/W                                               | 4             |  |
| Bits [3124]  | 0x01 to enable dual ROI mode else                       |                                                   |               |  |
| Bits [2316]  |                                                         | 0x01 to enable SubSampling mode for ROI1 else 0x0 |               |  |
| Bits [158]   | 0x01 to enable SubSampling mode for RC                  |                                                   | 00            |  |
| Bits [70]    | 0x01 to enable Shading Correction e                     | Ise 0x00                                          |               |  |
| 0 107 0      | VV. 1.4 P.0.1.4 P.0.1.4                                 |                                                   | , 1           |  |
| 0x60DC       | Height_ROI1/Height_ROI2                                 | R/W                                               | 4             |  |
| Bits [3116]  | ROI1 frame height (must be a multip                     |                                                   |               |  |
| Bits [150]   | ROI2 frame height (must be a multip                     | ole of 4)                                         |               |  |
| 0x60E0       | ROI1 Offset Y/ROI2 OffsetY                              | R/W                                               | 4             |  |
| Bits [3116]  | ROI1 Vertical Offset (must be a multi                   |                                                   | 7             |  |
| Bits [3110]  | ROI2 Vertical Offset (must be a multi-                  |                                                   |               |  |
| Dits [150]   | RO12 Vertical Offset (must be a mult                    | ipic oi 4)                                        |               |  |
| 0x6008       | Framerate                                               | R/W                                               | 4             |  |
| Bits [310]   | Current framerate (0x60C0 for floating                  |                                                   |               |  |
| []           |                                                         | 8                                                 |               |  |
| 0x600C       | Framerate_Max                                           | R                                                 | 4             |  |
| Bits [310]   | Maximal framerate for the current frame format (0x6     | 50C4 for flo                                      | oating value) |  |
|              |                                                         |                                                   |               |  |
| 0x6010       | Exposure_Time                                           | R/W                                               | 4             |  |
| Bits [310]   | Current exposure time (unit = us) $(0x60C8 \text{ fo})$ | or floating v                                     | ralue)        |  |
|              |                                                         |                                                   |               |  |
| 0x60BC       | Exposure_Time_Max                                       | R/W                                               | 4             |  |
| Bits [310]   | Maximal exposure time for the current framerate (u      | unit = us) ((                                     | 0x60CC for    |  |
|              | floating value)                                         |                                                   |               |  |
| 0x6018       | Cymahranization                                         | R/W                                               | 4             |  |
| Bits [310]   | Synchronization 0x0000 for internal synchronization     |                                                   | 4             |  |
| [טונא [טונא] | 0x00001 for internal synchronization (A                 |                                                   |               |  |
|              | 0x0001 for external synchronization (A                  |                                                   |               |  |
|              | OAGGOZ to use trigger over Court                        | . 1000                                            |               |  |
| 0x601C       | Stream_Start                                            | R/W                                               | 4             |  |
| Bits [3124]  | Not used                                                |                                                   |               |  |
| Bits [2316]  | 0x00 to switch ON indicator lan                         | nps                                               |               |  |
|              | 0x01 to switch OFF indicator lan                        | -                                                 |               |  |
| Bits [158]   | 0x01 to send pattern frame else 0                       |                                                   |               |  |
| Bits [70]    | 0x00 to stop streaming (only idle packe                 |                                                   |               |  |
|              | 0x01 to enable streaming (sensor data packets are sent) |                                                   |               |  |
|              |                                                         |                                                   |               |  |
|              | Save_User_Boot_To_Flash                                 |                                                   |               |  |



| Bits [310] | Write 0x00000001 to save current camera configuration to flash (frame format, |  |  |
|------------|-------------------------------------------------------------------------------|--|--|
|            | framerate, exposure time, synchronization, CXP transfer rates, CXP link       |  |  |
|            | number). After power up, the camera starts streaming IDLE packets.            |  |  |
|            | Write 0x00000101 to save current camera configuration to flash (frame format, |  |  |
|            | framerate, exposure time, synchronization, CXP transfer rates, CXP link       |  |  |
|            | number). After power up, the camera directly starts streaming image data.     |  |  |

| 0x6028      | Camera_Serial_Number | R | 16 |
|-------------|----------------------|---|----|
| Bits [1270] | Camera serial number |   |    |

| 0x6038     | Color_Sensor                                         | R | 4 |  |
|------------|------------------------------------------------------|---|---|--|
| Bits [310] | Returns 0x00000001 if camera has a color sensor      |   |   |  |
|            | Returns 0x00000000 if camera has a monochrome sensor |   |   |  |

What's new for firmware version >=4.1

Special Modes:

- dual ROI
- subsampling

#### **Dual ROI:**

Dual ROI allows to define two not-overlapping ROIs (Region Of Interest).

The option is selected by writing 0x01 to the bits 31..24 of the 'Special Modes' (0x60D8) register.

ROI1 is always the top ROI and ROI2 the bottom ROI.

By default, vertical offset of ROI1 is 0 and vertical offset of ROI2 is equal to the height of ROI1.

Streaming has to be stopped before changing the 'Special Modes' (0x60D8) register.

Streaming can be stopped by writing 0x01 to the bits 7..0 of the 'Stream\_Start' (0x601C) register.

Vertical offsets and heights of the 2 ROIs are defined in the 0x60E0 and 0x60DC register.

Width of ROIs are the same and can be defined in the register 0x6000.

Horizontal offset of ROIs are the same and can be defined in the register 0x60D0.

When special mode is used, the register 0x6004 is reserved and is automatically calculated by the camera.

For example, if 0x60DC contains the hexadecimal value 0x02000100, the bits 15..0 of register 0x6004 will automatically contain the value 0x0300=0x0200+0x0100.

#### **Subsampling:**

Subsampling mode allows to transfer only the even lines of the ROI or ROIs.

The option is selected for ROI1 by writing 0x01 to the bits 23..16 of the 'Special Modes' (0x60D8) register.

The option is selected for ROI2 by writing 0x01 to the bits 15..8 of the 'Special Modes' (0x60D8) register.



Streaming has to be stopped before changing the 'Special Modes' (0x60D8) register.

Streaming can be stopped by writing 0x01 to the bits 7..0 of the 'Stream\_Start' (0x601C) register.

Vertical offset and height of the ROI or ROIs are defined in the 0x60E0 and 0x60DC register.

When special mode is used, the register 0x6004 is reserved and is automatically calculated by the camera.

For example, if 0x60DC contains the hexadecimal value 0x02000000 and 0x60D8 contains the hexadecimal value 0x00010000, the bits 15..0 of register 0x6004 will automatically contain the value 0x0100=0x0200/2.

If dual ROI mode is activated, each ROI can be configured with or without subsampling mode.

#### Setup to follow when using 'Special Modes':

- 1) Ensure that streaming is stopped (bits 7..0 of 0x601C must be set to 0x00).
- 2) Setup the register 0x60D8 to the desired value
- 3) Modify heights and offsets manually via the registers 0x60DC and 0x60E0.
- 4) Start streaming (bits 7..0 of 0x601C must be set to 0x01)
- 5) After streaming is started, the user can change the offset values of the ROI or ROIs (0x60E0).

All these parameters are also defined in the internal XML file of the camera.

#### Gen<i>Cam

Optronis ships together with the CP80-4-M/C-500 camera a XML file that is Gen<i>Cam compatible. The XML file follows the SNFC (Standard Features Naming Convention).

Please ask, if needed, the Optronis customer service for the availability of this XML file.

Ref. 1887-SU-01-A