User Manual

Revision History

Revision	Date	Descriptions			
1.0	2010/10/22	Initial release			
		Added 8M and 29M			
1.1	2012/1/31	Updated MS word style			
		Fixed Minor errors.			
4.0	2012/07/20	Deleted 11M			
1.2		Modified Mechanical Dimension			
1.3	2013/02/22	Modified Mechanical Dimension			
	2013/06/14	Added description of M5 set screws for tilt adjustment			
1.4		Revised spectral response according to the updated TSI datasheets			
1.4		Added Actual Time Applied for Commands			
		Removed the Horizontal Flip feature from VP-8MC and VP-29MC			
1.5	2013/08/21	Added DSNU Correction feature to VP-8MC and VP-29MC			

Contents

1		Precautions6				
2		Varranty7				
3	Сс	ompliance & Certifications7				
	3.1	FCC Declaration				
		CE : DoC				
		8.2.1 KCC Statement				
4		omponents and Connections				
5		oduct Specifications				
	5.1	Overview				
	5.2	Specifications				
	5.3	Camera Block Diagram				
	5.4					
		6.4.1 Mono Camera Spectral Response				
	5	6.4.2 Color Camera Spectral Response				
	5.5	Mechanical Specification				
6	Co	onnecting the Camera				
	6.1	Precaution to center the image sensor				
	6.2	Precaution about blurring compared to center				
	6.3	Installing the Configurator				
7	Ca	amera Interface				
	7.1	General Description				
	7.2	Camera Link Connector				
	7.3	Power Input Connecter				
	7.4	Control Connecter				
	7.5	Trigger Input Circuit	- 21			
	7.6	Strobe Output Circuit	- 21			
8	Ca	amera Features				
	8.1	Area Of Interest (AOI)				
	8.2	Binning	- 25			
	8.3	Trigger	- 26			
	8	8.3.1 Trigger Input	-26			
	8.4	Channel Mode	- 32			
	8.5	Gain and Offset	- 34			
	8.6	LUT	- 35			

	8.7	Defective Pixel Correction	36
	8.	7.1 Correction Method	-36
	8.8	Flat Field Correction	37
	8.9	Dark Signal Non-uniformity Correction (VP-8M/29M Only)	39
	8.10	Temperature Monitor	39
	8.11	Status LED	39
	8.12	Data Format	40
	8.13	Test Image	41
	8.14	Horizontal Flip (Only available on VP-16MC)	43
	8.15	Image Invert (Positive/Negative)	44
	8.16	Strobe	45
	8.	16.1 Strobe Offset	- 45
	8.	16.2 Strobe Polarity	- 46
	8.17	Field Upgrade	46
9	Ca	mera Configuration	47
	9.1	Setup command	47
	9.2	Actual Time Applied for Commands	49
	9.3	Parameter Storage Space	50
	9.4	Command List	51
1(0 Co	nfigurator GUI	54
	10.1	VP Camera Scan	54
	10.2	Menu	55
	10	0.2.1 File	- 55
	10	0.2.2 Start-Up	- 56
	10	D.2.3 Tool	- 57
	10	D.2.4 About	- 58
	10.3	Tab	-59
	10	D.3.1 VIEW Tab	- 59
	10	0.3.2 MODE/EXP Tab	-60
	10	0.3.3 ANALOG Tab	-61
	10	0.3.4 LUT Tab	-62
	10	0.3.5 FFC Tab	-63
	10	0.3.6 TEC Tab	-64

Appen	dix A	Defective Pixel Map Download	65
Appen	dix B	LUT Download	66
B.1	Gamma	a Graph Download	68
B.2	CSV Fi	le Download	70
Appen	dix C	Field Upgrade7	72
C.1	MCU		72
C.2	FPGA -		75

1 Precautions

General

•	• Do not drop, damage, disassemble, repair or alter the device.
	Do not let children touch the device without supervision.
	Do not use the device for any other purpose then specified.
CAUTION	Contact your nearest distributor in case of trouble or problem.
CAUTION	

Installation and Maintenance

	•	Do not install the device in a place subject to direct sun light, humidity, dust or soot.
	•	Do not place magnets near the product.
	•	Do not place the device next to heating equipments.
CAUTION	•	Be careful not to let liquid like water, drinks or chemicals leak inside the device.
	•	Clean the device often to remove dust on it.
	•	In clearing, do not splash water on the device but wipe it out with smooth cloth or towel.

Power Supply

	•	Applying incorrect power can damage the camera. If the voltage applied to the camera is
\wedge		greater or less than the camera's nominal voltage (12V DC $\pm 10\%$ voltage, over 3A of
		output current), the camera may be damaged or operate erratically. Please refer to 5.2
CAUTION		Specifications for the camera's nominal voltage.
	*	Vieworks Co., Ltd. does NOT provide power supplies with the devices.

2 Warranty

For information about the warranty, please contact your local dealer or factory representative.

3 Compliance & Certifications

3.1 FCC Declaration

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expenses.

3.2 CE : DoC

EMC Directive 2004/108/EC. Testing Standard EN 55022:2006+A1:2007, EN 55024:1998+A1:2001+A2:2003 Class A

3.2.1 KCC Statement

Туре	Description
Class A	This device obtained EMC registration for office use (Class A), and may
(Broadcasting Communication	be used in places other than home. Sellers and/or users need to take
Device for Office Use)	note of this.

4 Components and Connections

Package Components

VP Camera (F-Mount)

Mount Plate (Optional)

M5 Set Screws for Tilt Adjustment (Provided only with F-mount camera)

•

- You can adjust the tilt using the M5 set screws, however it is not recommended since it is adjusted as factory default settings.
- If the tilt settings need to be adjusted inevitably, please contact your local dealer or factory representative for technical support.

5 Product Specifications

5.1 Overview

VP Series cameras are thermoelectric Peltier (TEC) cooled high performance digital cameras. These cameras use cooling technology developed for, and used by, many demanding medical market customers. The TEC maintains the operating temperature of the CCD at up to 20 degrees below ambient temperature. These cameras provide a stable operating condition or the ability to expose for a long period of time to increase camera sensitivity. These cameras are ideal for industrial applications such as FPD inspection and microscopy.

Main Features

- Area Of Interest (AOI)
- Trigger Mode
- Binning Mode $-2 \times 2/4 \times 4$
- Output Pixel Format 8 / 10 / 12 bit
- Output Channel 1 or 2 Tap
- Auto Taps Adjustment
- Electronic Shutter
- 2D Flat Field Correction
- Strobe Output
- Analog Gain adjustment function
- Analog Offset adjustment function
- Look Up Table
- Defective Pixel Correction
- Flat Field Correction
- Test Image
- Horizontal Flip (Only available on VP-16MC)
- Image Invert
- RS-644 Serial Communication
- Temperature Monitor
- Field Upgrade
- Base Camera Link
- Peltier Cooling

5.2 Specifications

VP Series	VP-8M	VP-16M	VP-29M
Active Image (H × V)	3296 × 2472	4872 × 3248	6576 × 4384
Sensor Type	Kodak KAI-08050	Kodak KAI-16000	Kodak KAI-29050
Pixel size	5.5 μ m $ imes$ 5.5 μ m	7.4 μ m $ imes$ 7.4 μ m	5.5 µm × 5.5 µm
Sensor Output	1, 2 or 4 Tap Output	1 or 2 Tap Output	1, 2 or 4 Tap Output
Video Output		8/10/12 bits, 1 or 2 Tap	
Camera Interface		Camera Link (Base)	
Electronic Shutter		Global Shutter	
Max. Frame Rate at Full Resolution	16.3 fps	4.2 fps	5 fps
Pixel Clock	40 / 80 MHz	30 / 40 MHz	40 / 80 MHz
Exposure Time	1/100000 ~ 7 sec (10 μs step)	1/4500 ~ 7 sec (10 μs step)	1/100000 ~ 7 sec (10 μs step)
Partial Scan (Max. Speed)	84 fps at 300 Lines	17 fps at 406 Lines	16 fps at 1000 Lines
Gamma Correction	User defined LUT (Look Up Table)		
Black Offset	Adjustable (0 ~ 127 LSB at 12 bits , 256 step)		56 step)
Video Gain	Analog Gain: 0 ~ 32 dB, 900 step		ep.
Trigger Mode	Mode(Free-Run, Overlap, Fast, Double), Programmable exposure time and trigger polarity		,
External Trigger	External, 3.3 V - 5.0 V, 10 mA, optically isolated		v isolated
Software Trigger	Camer	a Link CC1, Programmable Ex	posure
Dynamic Range	>62 dB		
Lens Mount	F-mount		
Cooling Method	Thermoelectric Peltier Cooling		
Cooling Performance	20°C below ambient temperature Standard cooling with a fan		15°C
Power	10 ~ 14 V DC, Max. 25W 10 ~ 14 V DC, Max. 25W		
Environmental	Operating: -5℃ ~ 40℃, Storage : -30℃ ~ 65℃		
Mechanical	90.0 mm × 90.0 mm × 142.0 mm, 1550 g (with F-mount)		

Table 5.1 Specifications of VP Series

5.3 Camera Block Diagram

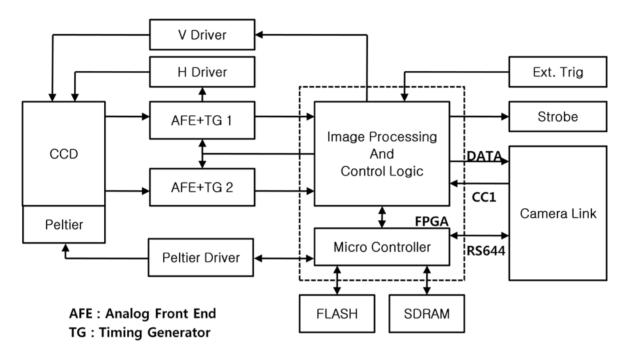


Figure 5.1 VP Camera Block Diagram

All controls and data processing of VP cameras are carried out in one FPGA chip. The FPGA generally consists of 32 bit RICS Micro-Controller and Processing & Control logic. The Micro-Controller receives commands from the user through the Camera Link interface and then processes them. The FPGA controls the Timing Generators (TGs) and the Analog Front End (AFE) chips where the TGs generate CCD control signals and AFE chips convert analog CCD output to digital values to be accepted by the Processing & Control Logic. The Processing & Control logic processes the image data received from AFE and then transmits data through the Camera Link interface. And also, the Processing & Control Logic controls the trigger inputs and strobe outputs which are sensitive to time. Furthermore, SDRAM and FLASH is installed outside FPGA. SDRAM is used for the frame buffer to process images and FLASH contains the firmware that operates the Micro-Controller. And, Peltier Driver is applied to control Thermoelectric Peltier Cooling unit.

5.4 Spectral Response

5.4.1 Mono Camera Spectral Response

The following graphs show the spectral response for VP Camera Link series monochrome cameras.

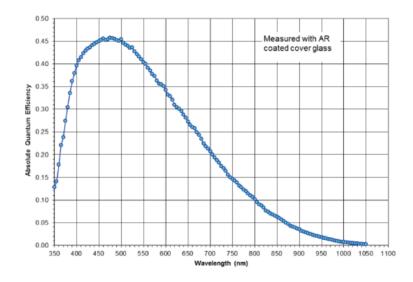


Figure 5.2 VP-8MC-M16 Spectral Response

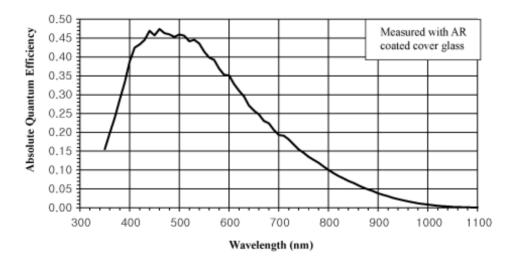


Figure 5.3 VP-16MC-M4 Spectral Response

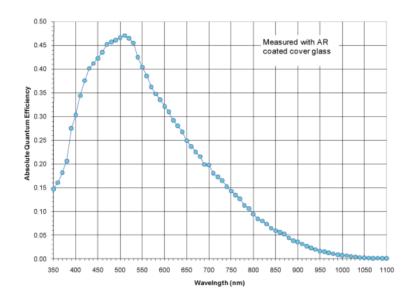
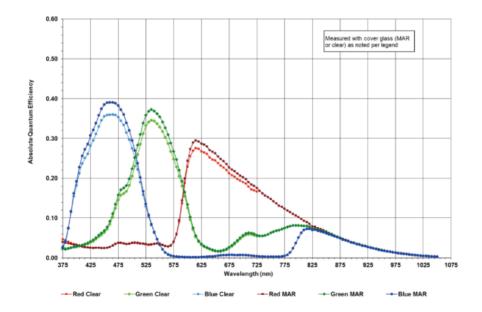
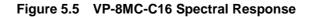




Figure 5.4 VP-29MC-M5 Spectral Response

5.4.2 Color Camera Spectral Response

The following graphs show the spectral response for VP Camera Link series color cameras.

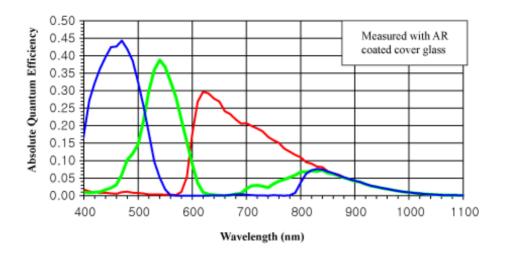


Figure 5.6 VP-16MC-C4 Spectral Response

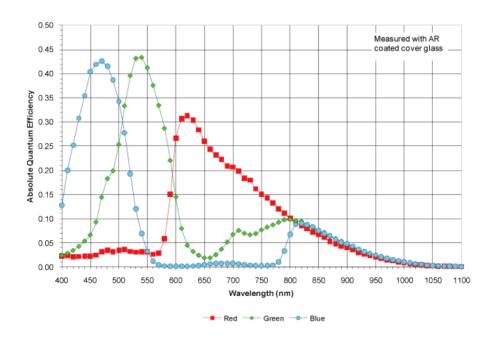


Figure 5.7 VP-29MC-C5 Spectral Response

5.5 Mechanical Specification

The camera dimensions in millimeters are as shown in the following figure.

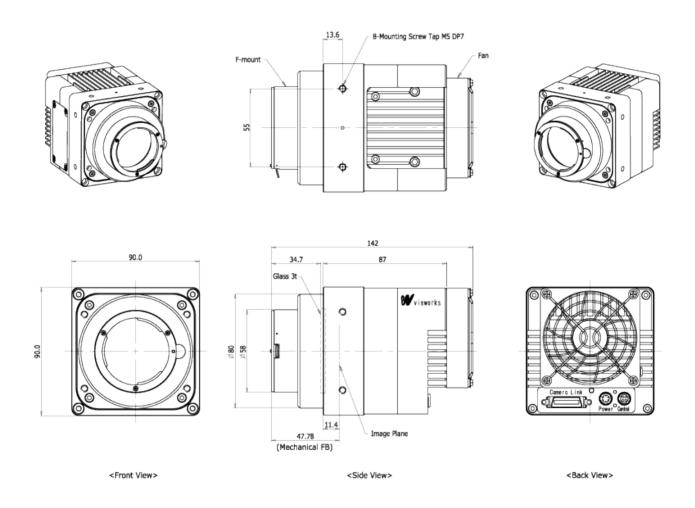


Figure 5.8 VP Camera Mechanical Dimension (F-Mount)

6 Connecting the Camera

The following instructions assume that you have installed a Camera Link frame grabber in your PC including related software. For more information, refer to your Camera Link frame grabber User Manual. To connect the camera to your PC, follow the steps below:

- 1. Make sure that the power supply is not connected to the camera and your PC is turned off.
- 2. Plug one end of a Camera Link cable into the Camera Link connector on the camera and the other end of the Camera Link cable into the Camera Link frame grabber in your PC.
- 3. Connect the plug of the power adaptor to the power input connector on the camera.
- 4. Plug the power adaptor into a working electrical outlet.
- 5. Verify all the cable connections are secure.

6.1 **Precaution to center the image sensor**

- User does not need to center the image sensor as it is adjusted as factory default settings.
- When you need to adjust the center of image sensor, please contact your local dealer or the manufacturer for technical assistance.

6.2 **Precaution about blurring compared to center**

- User does not need to adjust the tilt as it is adjusted as factory default settings.
- If the tilt settings need to be adjusted inevitably, please contact your local dealer or factory representative for technical support.

6.3 Installing the Configurator

- You can control the camera by executing the Configurator.exe file.
- You can download the latest Configurator at <u>http://machinevision.vieworks.com</u>.
- Please refer to your Frame Grabber User Manual.

7 Camera Interface

7.1 General Description

As shown in the following figure, 4 types of connectors and status indicator LED are located on the back of the camera and have the functions as follows:

- 1 2 pin FAN Connector:
- supplies power to the fan.
- 2 26 pin Camera-Link Connector:
 - controls video data transmission and the camera.

- ③ Status LED:
- displays power status and operation mode. inputs external trigger signal and outputs strobe.
- ④ 4 pin Control Connector:
 ⑤ 6 pin Power Input Connector:
- supplies power to the camera.

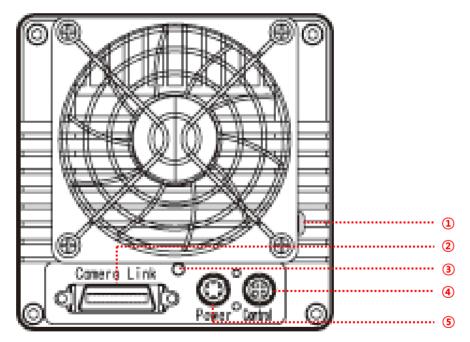


Figure 7.1 VP Series Back Panel

7.2 Camera Link Connector

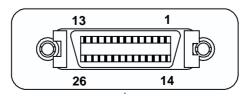


Figure 7.2 Camera Link Connector

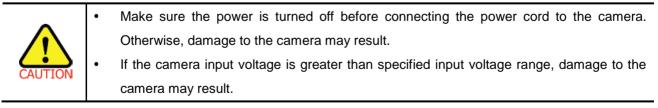
Camera Link connector complies with Camera Link Standard and the following list shows the pin configuration of the connector.

PAIR List	Pin	Signal Name	Туре	Description
	1	Ground	Ground	Cable Shield
PAIR 0	14	Ground	Ground	Cable Shield
	2	-X0	LVDS - Out	Camera Link Transmitter
PAIR 1	15	+X0	LVDS - Out	Camera Link Transmitter
	3	-X1	LVDS - Out	Camera Link Transmitter
PAIR 2	16	+X1	LVDS - Out	Camera Link Transmitter
PAIR 3	4	-X2	LVDS - Out	Camera Link Transmitter
PAIR 3	17	+X2	LVDS - Out	Camera Link Transmitter
	5	-X3	LVDS - Out	Camera Link Transmitter
PAIR 4	18	+X3	LVDS - Out	Camera Link Transmitter
	6	-XCLK	LVDS - Out	Camera Link Transmitter
PAIR 5	19	-XCLK	LVDS - Out	Camera Link Transmitter
PAIR 6	7	- SerTC	LVDS - In	Serial Data Receiver
PAIR 0	20	+ SerTC	LVDS - In	Serial Data Receiver
PAIR 7	8	- SerTFG	LVDS - Out	Serial Data Transmitter
PAIR /	21	+ SerTFG	LVDS - Out	Serial Data Transmitter
	9	- CC 1	LVDS - In	Software External Trigger
PAIR 8	22	+ CC 1	LVDS - In	Software External Trigger
	10	N/C	N/C	N/C
PAIR 9	23	N/C	N/C	N/C
PAIR 10	11	N/C	N/C	N/C
PAIR 10	24	N/C	N/C	N/C
	12	N/C	N/C	N/C
PAIR 11	25	N/C	N/C	N/C
	13	Ground	Ground	Cable Shield
PAIR 12	26	Ground	Ground	Cable Shield

 Table 7.1
 Pin Assignments for Camera Link Base Configuration

7.3 Power Input Connecter

The power input connector is Hirose 6 pin connector (part # HR10A-7R-6PB). Pin arrangement and configuration are as follows:


Figure 7.3 Pin Arrangement of Power Input Connector

Pin Number	Signal	Туре	Description
1, 2, 3	+ 12V DC	Input	DC Power Input
4, 5, 6	DC Ground	Input	DC Ground

Table 7.2	Pin Configuration of Power Input Connector
-----------	--

Connecting the power cable to the camera can be made by using the Hirose 6 pin plug (part # HR10A-7P-6S) or the equivalent. The power adaptor is recommended to have at least 3A current output at $12 \text{ V DC} \pm 10\%$ voltage output (Users need to purchase the power adaptor separately).

Precaution for Power Input

7.4 Control Connecter

The control connector is a Hirose 4 pin connector (part # HR10A-7R-4S) and consists of external trigger signal input and strobe output ports. Pin arrangement and configuration are as follows:

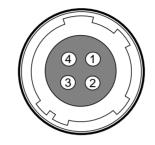


Figure 7.4 Pin Arrangement of Control Connector

Pin Number	Signal	Туре	Description
1	Trigger Input +	Input	-
2	Trigger Input -	Input	-
3	DC Ground	-	DC Ground
4	Strobe Out	Output	3.3V TTL Output
			Output resistance : 47 Ω

Table 7.3 Pin Arrangement of Control Connector

The mating connector is a Hirose 4 pin plug (part # HR10A-7P-4P) or the equivalent connectors.

7.5 Trigger Input Circuit

Following figure shows trigger signal input circuit of the 4-pin connector. Transmitted trigger signal is applied to the internal circuit through a photo coupler. Minimum trigger width that can be recognized by the camera is 1 μ s. If transmitted trigger signal is less than 1 μ s, the camera will ignore the trigger signal. External trigger circuit example is shown below.

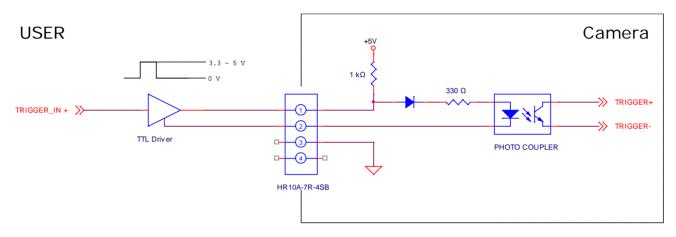
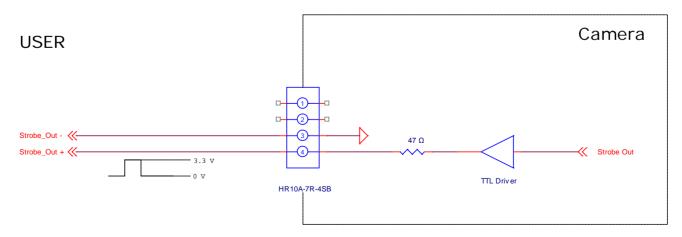
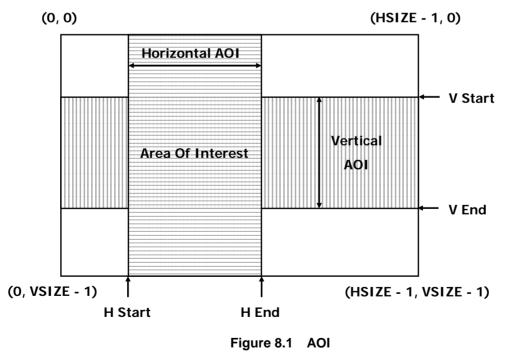



Figure 7.5 Trigger Input Schematic

7.6 Strobe Output Circuit

The strobe output signal is 3.3 V output level of a TTL Driver IC. The pulse width of signal is synchronized with the exposure signal (shutter) of the camera.


8 Camera Features

8.1 Area Of Interest (AOI)

AOI is the area containing the data required by the user within the entire image. The user can obtain the image faster than obtaining overall areas by designating the area as AOI while keeping the same high quality. AOI is determined as the overlapping area of 2 areas when designating start point and end point in horizontal and vertical direction as shown in figure below. Start point and End point mean the starting and end of the AOI. According to characteristics of the sensor structure, readout of the image will be proceeded at the top and bottom simultaneously. If the Channel mode is set to 4 Tap and Vertical AOI is applied, V End will be ignored because V End is defined by V Start. The actual V End will be applied according to the following formula:

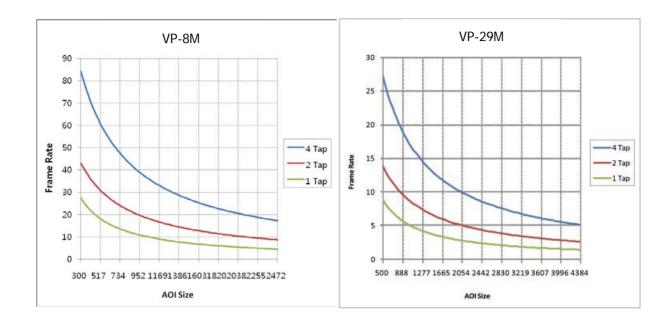
V End = (V SIZE - V Start) - 1

The narrower Vertical AOI is designated, the faster the frame speed will be. However Horizontal AOI does not affect frame speed. For more information about AOI parameter settings, see "sha" and "sva" command on <u>Command List</u>.

The AOI values (H \times V) may vary depending on the type of frame grabber.

For technical assistance, contact to your local dealer or the manufacturer.

The maximum frame speed depending on the change of Vertical AOI can be obtained as shown in the following expression.


1 or 2 Channel Mode for VP-8M & VP-29M:		
$\label{eq:Frame Rate (fps) = 1000000 / [T_{VCCD} + T_{FD} \times \{V_{SIZE} - (V_{AOI} + 12)\} + (V_{AOI} + 12) \times T_{L}]$		
1 or 2 Channel Mode for VP-16M:		
Frame Rate (fps) = 1000000 / {T $_{\rm VCCD}$ + T $_{\rm FD}$ × (V $_{\rm SIZE}$ - V $_{\rm AOI}$) + V $_{\rm AOI}$ × T $_{\rm L}$ }		
4 Channel Mode for VP-8M & VP-29M:		
$ \label{eq:Frame Rate (fps) = 1000000 / [T_{VCCD} + T_{FD} \times \{V_{SIZE} - (V_{AOI} + 12)\}/2 + \{(V_{AOI} + 12) \times T_L\}/2] $		
$ extsf{T}_{ extsf{VCCD}}$: time required to move electric charges accumulated on pixel to Vertical		
Register		
T_{FD} : time required for Fast Dump		
V_{SIZE} : number of Vertical Line of CCD		
T_L : time required for transmission of one line		
V_{AOI} : size of Vertical AOI		

The available minimum value of T_{VCCD} , T_{FD} , V_{SIZE} , T_L and V_{AOI} may vary depending on the camera model. The value of T_L may vary depending on the channel mode. The values of each item depending on the camera model are shown below.

VP Series	VP-8M	VP-16M	VP-29M
T _{VCCD}	17.0 <i>µ</i> s	242.0 µs	56.3 μs
T_{L} (1 channel)	90.5 μs	135.0 <i>µ</i> s	172.3 µs
T_L (2 channel)	46.6 µs	73.0 µs	90.125 µs
T_{L} (4 channel)	46.6 µs	-	90.125 µs
T _{FD}	4.1 μs	16.0 µs	6.8 µs
V _{SIZE}	2520 Lines	3248 Lines	4384 Lines
Minimum Vertical AOI Size	300 Lines	406 Lines	500 Lines

Table 8.1	Timing Value for VP Series
-----------	----------------------------

The following figure shows frame rate depending on VAOI changes.

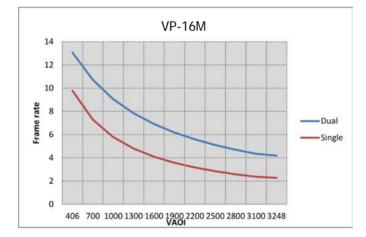


Figure 8.2 Frame Rate by VAOI changes

8.2 Binning

Binning has the effects of increasing the level value and decreasing resolution by adding the values of the adjacent pixels and sending them as one pixel. The camera applies same Binning Factor (2 or 4) to both directions in order to keep the percentage of image. The below figure shows application of 2×2 Binning and 4×4 Binning respectively. Since Binning in vertical direction is processed at internal register of CCD, the frame speed increases as many as Binning Factor if Binning is applied, but Binning in horizontal direction does not affect frame speed. Binning Factor is set using "sbf" command.

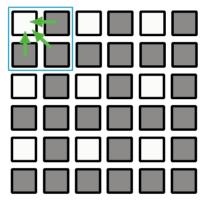


Figure 8.3 2×2 Binning

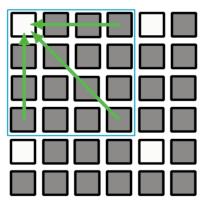


Figure 8.4 4×4 Binning

Even if the binning is performed on the color camera, the resulting image will be monochrome.

8.3 Trigger

8.3.1 Trigger Input

Trigger mode of the camera is divided into Trigger synchronous mode and Trigger asynchronous mode (hereinafter "Free-Run mode") depending on its synchronization with trigger input. Trigger synchronous mode is divided into Standard mode, Double Exposure mode, Fast mode, Overlap mode, depending on concrete operation type.

It is required to set the trigger first to operate the camera in Trigger synchronous mode. In concrete, it is required to select which one of CC1 port and TRIGGER_IN port should be used as trigger input and to set whether polarity of trigger should be Positive or Negative.

8.3.1.1 Free-Run Mode

Free-Run Mode repeats Readout depending on parameter value set in camera currently, regardless of trigger input.

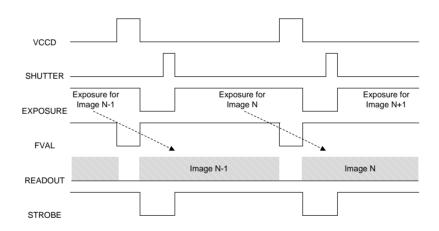


Figure 8.5 Free-Run Mode

As shown in the above figure, Readout section overlaps with exposure section of next image in Free-Run Mode. At this time, the camera operation slightly differs depending on length of Exposure Time and Readout time. If Exposure Time is shorter than Readout, Shutter signal occurs during readout, and when Readout finishes, Readout of next image starts (Figure 8.6). In this case, frame speed is constant regardless of change in Exposure Time. But if Exposure Time is set longer than Readout time, Shutter signal occurs together with start of Readout and Readout of next image does not start until Exposure Time set elapses even if Readout finishes (Figure 8.7). In this case, frame speed gets lower as the setting value of Exposure Time increases.

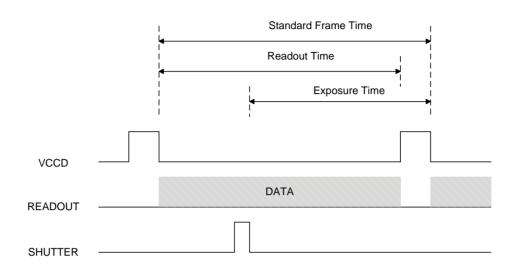


Figure 8.6 Exposure Time is Shorter than Readout Time

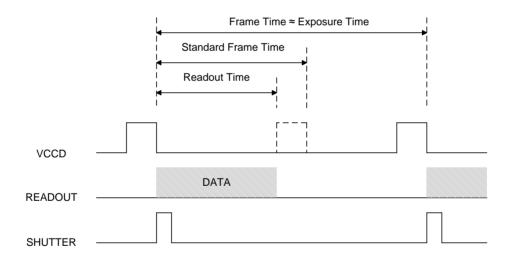
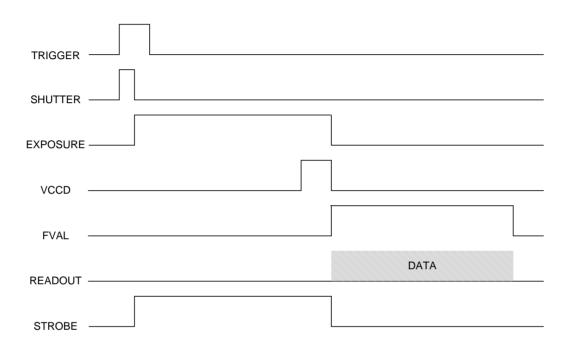
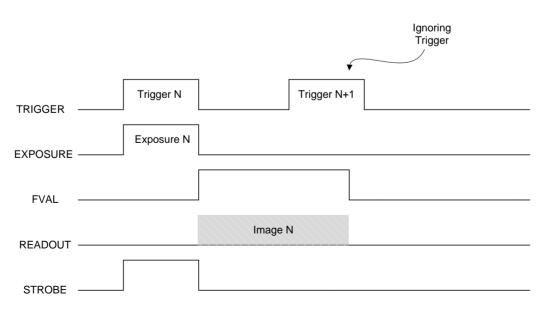



Figure 8.7 Exposure Time is longer than Readout Time



8.3.1.2 Standard Mode

In Standard Mode, camera keeps standby status until trigger signal is entered, and when trigger input occurs, Readout start after Exposure process set earlier. After Readout is completed, and returns to trigger standby status again. In Standard Trigger mode, if a new trigger input occurs during readout, the new trigger input is ignored.

Page 28 of 76

8.3.1.3 Double Exposure Mode

In Double Exposure mode, 2 images are obtained with 1 trigger input. When trigger input is entered in this mode, the camera starts Readout after passing through exposure process according to exposure setting as in Standard mode. At this time, exposure of second image starts with Readout. When Readout is completed, the camera performs the second Readout. Since it does not generate shutter signal during Readout of the 1st image, the interval between completion of 1st exposure and starting of 2nd exposure is as short as several μ s ~ several decades μ s.

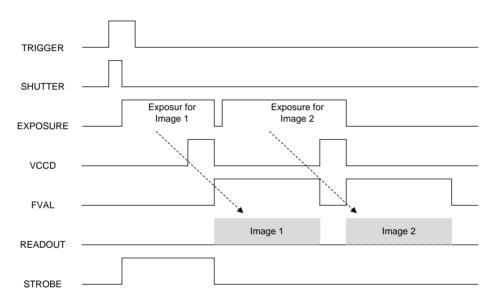
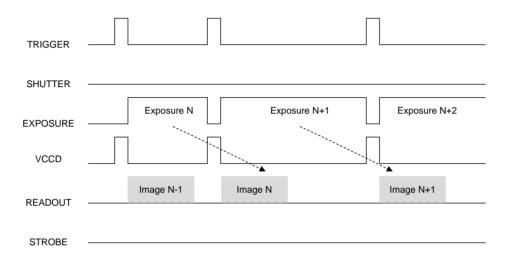
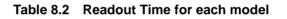


Figure 8.10 Double Exposure Trigger Mode

8.3.1.4 Fast Mode

Fast Mode is used when interval of trigger input is faster and more continuous than in Standard Mode. Its difference from Standard Mode is that while Readout starts in exposure time as set earlier when trigger input occurs in Standard Mode, while Readout immediately starts after trigger input in Fast Mode. And Interval between triggers becomes the exposure time of image since it does not generate shutter signal during Readout.



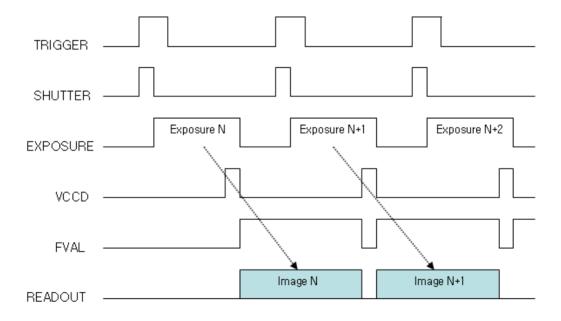
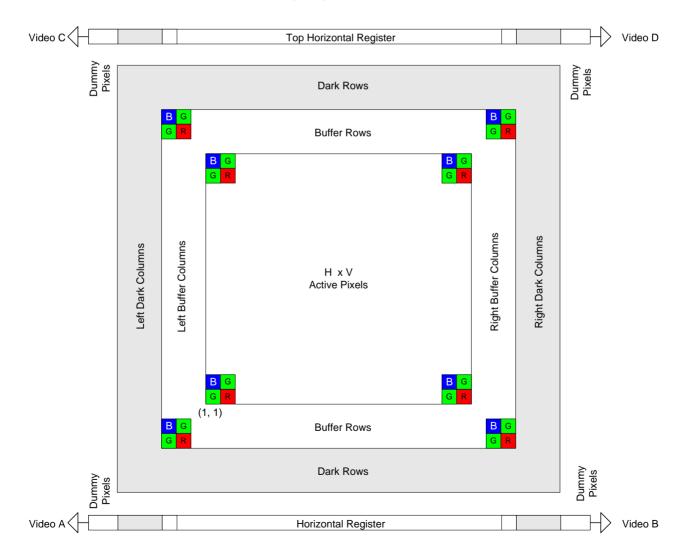

Figure 8.11 Fast Trigger Mode

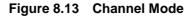
8.3.1.5 Overlap Mode

Camera keeps standby status until trigger signal is entered like in Standard Mode, and Readout starts after exposure process set earlier if trigger input occurs. When new trigger input occurs during Readout of First image, it keeps Readout and performs exposure process of new trigger input. Provided, however, that when trigger input occurs during Exposure since Exposure Time is longer than trigger interval, that trigger signal is ignored. To obtain the image as maximum frame for trigger input, Exposure Time should not be longer than Readout time, trigger time should not be shorter than Readout time. Readout time for each model is as follows:

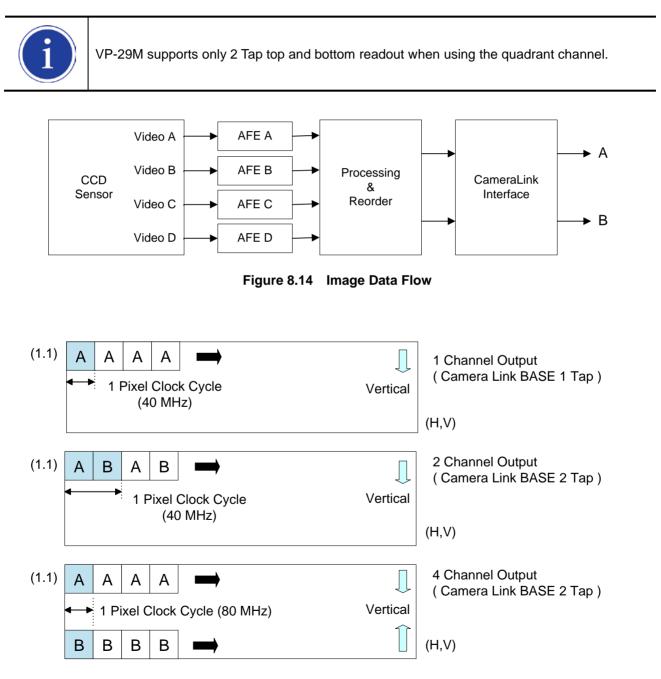
Channel Mode	VP-8M	VP-16M	VP-29M
1 channel	226.5 ms	454.5 ms	763.1 ms
2 channel	121.9 ms	238.1 ms	397.7 ms
4 channel	61.3 ms	-	199.6 ms

In addition, overlap mode operates ideally when trigger signal interval or exposure time is constantly kept.


Figure 8.12 Overlap Trigger Mode

8.4 Channel Mode


Accumulated charges are read out of the sensor when exposure ends. The sensor can be read out in one tap (single channel), two tap (dual channel) or four tap (quadrant channel - VP-8MC and VP-29MC only). In case of one tap output, all pixel values of Horizontal Register are shifted towards the left bottom Video Amplifier (Video A). In case of two tap output, pixel values from left to the center of Horizontal Register are shifted towards the Video A, and pixel values from the right are shifted towards the Video B. In case of four tap output (VP-8MC and VP-29MC), pixel values of the lower left area are shifted towards the Video A, pixels values of the lower right area are shifted towards the Video B, pixel values of the upper left area are shifted towards the Video C, and pixel values of the upper right area are shifted towards the Video D. The advantage of four tap output is that it makes readout about 4 times faster than one tap output.

The camera processes and rearranges the image data in order to be compliant with the base Camera Link Standard. In single channel, image data is read out line-by-line from the upper left corner until the last pixel in the lower right corner is read out. In dual channel, image data is read out of Channel A and B simultaneously in interleaved order. In quadrant channel, image data which is transmitted from Video A, B, C and D simultaneously, is read out with 2 Tap top and bottom or 2 Tap interleaved (Figure 8.15).

8.5 Gain and Offset

The camera has one Analog Signal Processor (or Analog Front End, abbreviated to AFE) for each channel. This AFE consists of Correlated double Sampler (CDS), Variable Gain Amplifier (VGA), Black Level Clamp and 12-bit A/D converter. AFE has register for Gain and Offset application inside, and can change Gain and Offset value by entering proper value in the register. Gain can be set between $0 \sim 899$. The relationship between setting value and actual Gain (dB) is as follows:

 $Gain(dB) = (Setting value \times 0.035 dB)$

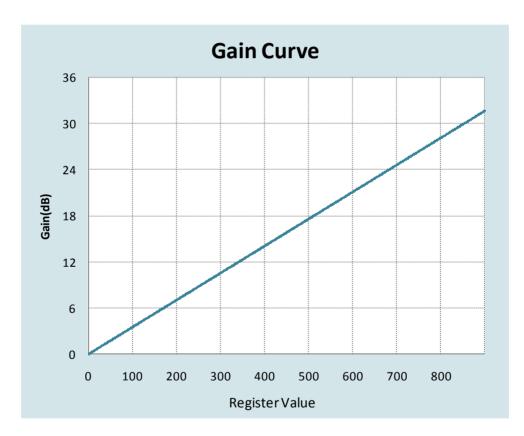
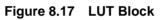


Figure 8.16 Register Setting for Gain Value


Offset can be set between 0 ~ 255 (LSB).

8.6 LUT

LUT (Lookup Table) converts original image value to certain level value. Since it is mapped one to one for each level value, 12-bit output can be connected to 12-bit input. LUT is in the form of table that has 4096 entries between 0~4095 and provides 2 non-volatile spaces for LUT data storage. User can select whether to apply LUT or not and where to apply the LUT using "sls" command. See <u>Appendix B</u> for how to download LUT data in the camera.

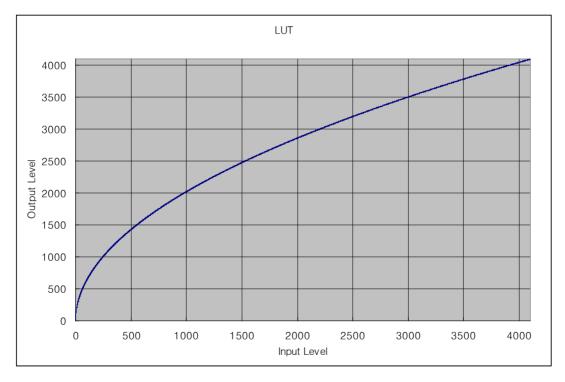
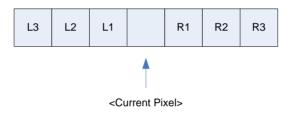


Figure 8.18 LUT at Gamma 0.5



8.7 Defective Pixel Correction

The CCD may have Defective Pixels which cannot properly react to the right. Correction is required since it may deteriorate the quality of output image. Defective Pixel information of CCD used for each camera is entered into the camera at the factory. If the user wants to add Defective Pixel information, it is required to enter coordinate of new Defective Pixel into the camera. See <u>Appendix A</u> for details. "sdc" command is used to set whether to use Defective Pixel Correction function.

8.7.1 Correction Method

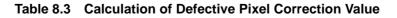

Correction value of Defective Pixel is calculated based on valid pixel value adjacent in the same line.

Figure 8.19 Location of Defective Pixel to be corrected

If Current Pixel is a Defective Pixel as shown in the above figure, correction value of this pixel is obtained as shown in the following table depending on whether surrounding pixel is Defective Pixel or not.

Adjacent Defective Pixel(s)	Correction value of Current Pixel
None	(L1 + R1) / 2
L1	R1
R1	L1
L1, R1	(L2 + R2) / 2
L1, R1, R2	L2
L2, L1, R1	R2
L2, L1, R1, R2	(L3 + R3) / 2
L2, L1, R1, R2, R3	L3
L3, L2, L1, R1, R2	R3

8.8 Flat Field Correction

Flat Field Correction is a function which corrects a non-uniform pixel response across a CCD and makes the response as uniform as possible (flat), assuming the offsets are non-varying (fixed) patterns. The Flat Field Correction function can be summarized by the following equation:

```
IC = {(IR - IB) × M } / (IF - IB)
Where,
IC : Level value of corrected image;
IR : Level value of original image;
IB : Black offset value;
M : Offset value of image after correction;
IF : Level value of Flat Field data.
```

In order to use the Flat Field Correction function, one must first generate IF, the Flat Field data. This can be done by adjusting the camera to the environment and activating the Flat Field Generator. The Flat Field Generator will standardize a series of images, curtailing the image to 1/16 pixel, generate the curtailed Flat Field data, and store it in the external frame buffer. When curtailed images are used for corrections, it is expanded and applied with a Bilinear Interpolation as shown in Figure 8.21. When the Flat Field data is generated, use the "sfo" command to set the M value, and use the "sfc" command to apply the Flat Field Correction. Here, the Flat Field data is stored on the RAM, a volatile memory. In order to reuse the stored data, the "sdf" command must be used to store them on the FLASH, a non-volatile memory.

	1. The activation of the Flat Field Generator will ignore the current camera configuration and will
	temporarily change the camera configuration to operate under the following default conditions. When
	the generation of the Flat Field data is complete, the original setting of the camera will be restored.
	Readout Mode : Normal
	Trigger Mode : Free-Run
CAUTION	Channel Mode : Single
	Defective Pixel Correction : ON
	2. The offset value M is based on the Normal Readout mode. According to the AOI mode, Binning
	mode, or Dual Channel mode, the offset value of an actual image is expressed differently.

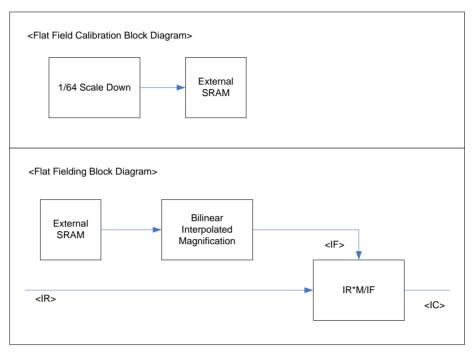
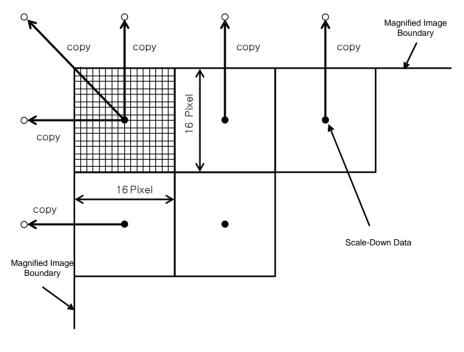



Figure 8.20 Generation and Application of Flat Field Data

8.9 Dark Signal Non-uniformity Correction (VP-8M/29M Only)

In theory, when an area scan camera captures a frame in complete darkness, all of the pixel values in the frame should be near zero and they should be equal. In practice, however, slight variations in the performance of the pixels in the sensor will cause some variations in the pixel values output from the camera when the camera is capturing in darkness. This variation is known as Dark Signal Non-uniformity (DSNU). The VP-8M and VP-29M models provide the DSNU Correction feature. "sdsnu" command is used to set whether to use the DSNU correction feature.

	When you enable the DSNU Correction feature, you cannot acquire frames at the camera's
•	nominal maximum frame rate.
	• This is true because the camera takes time (milliseconds) to apply the DSNU Correction
CAUTION	feature after reading out the pixel values.
CAUTION	• When you acquire frames using the CC1 or external triggering, you must consider the
	triggering cycle properly.

8.10 Temperature Monitor

Sensor chip is embedded in the camera to monitor the internal temperature. "gct" command is used to check the temperature of camera.

8.11 Status LED

There is green LED to inform the operation status of camera on the back of camera. LED status and corresponding camera status are as follows:

- Continuous ON:
- Repeat ON for 0.5 seconds, OFF for 0.5 seconds:

operates in Trigger Mode. outputs Test Image.

operates in Free-Run Mode.

- Repeat ON for 1 second, OFF for 1 second:
- Repeat ON for 0.25 second, OFF for 0.25 second:

operates in Trigger Mode and outputs Test Image.

8.12 Data Format

Data can be processed in the unit of 12 bit internally, but can be selectively output in the unit of 8, 10 or 12bit at output. When it is output in 8bit and 10bit unit, lower 4 bit and 2 bit are cut out from overall 12bits.

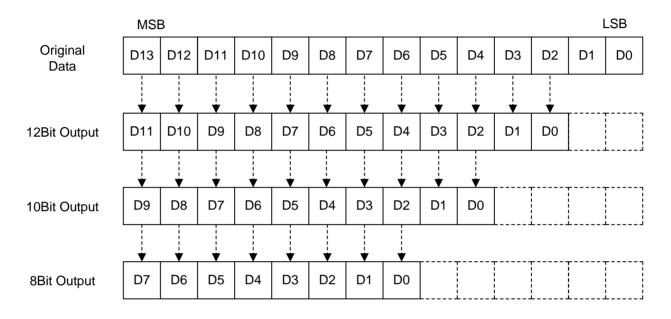


Figure 8.22 Data Format

8.13 Test Image

To check normal operation of camera, it can be set to output test image created inside, instead of image data from CCD. There are 3 types of test image; image with different value in horizontal direction (Test Image 1), image with different value in diagonal direction (Test Image 2), and moving image with different value in diagonal direction (Test Image 2), and moving image with different value in diagonal direction (Test Image 2), and moving image with different value in diagonal direction (Test Image 3). Test image can be applied in all operation modes of camera and is set using "sti" command.

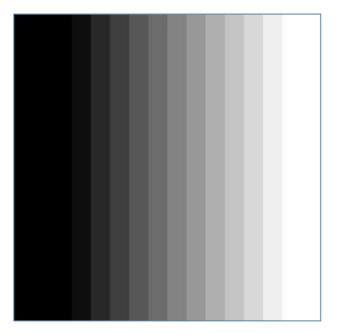


Figure 8.23 Test Image 1

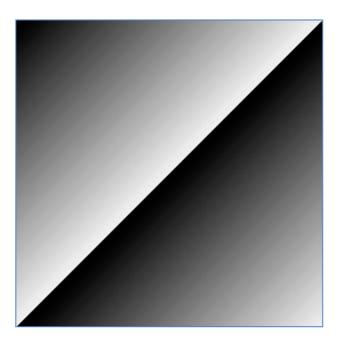


Figure 8.24 Test Image 2

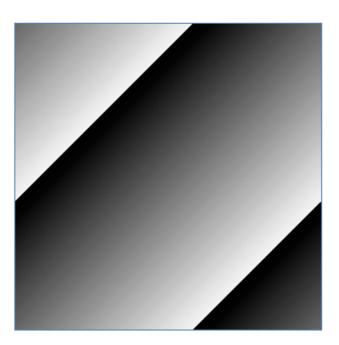


Figure 8.25 Test Image 3

The test image may look different because the region of the test image may vary depending on the camera's resolution.

8.14 Horizontal Flip (Only available on VP-16MC)

Function to flip the image right and left based on the central axis of image. This function can be applied to all operation modes and "shf" command is used to set whether to use this function or not.



Figure 8.26 Original Image

Figure 8.27 Horizontally Flipped Image

8.15 Image Invert (Positive/Negative)

Function to invert the level value of output image. Level value inverted differs depending on output data format even if input value is same. This function can be applied in all operation modes of camera and "sii" command is used to set whether to use this function or not.

Data Format	Original Value	Inverted Level Value
8	0	255
10	0	1023
12	0	4095

Table 8.4 Inverted level value by Data Format

Figure 8.28 Original image (Positive)

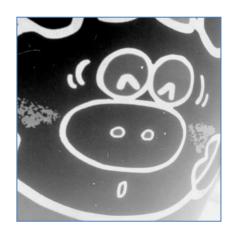


Figure 8.29 Inverted image (Negative)

8.16 Strobe

Strobe signal is used to synchronize the external light source with camera or to measure the exposure time applied to current camera. Pulse width of Strobe signal is from the generating point of Shutter signal to the starting point of Readout, which coincides with exposure time of camera.

8.16.1 Strobe Offset

Strobe Offset value indicates when Strobe signal is to be sent after Shutter signal. Value can be set in the unit of 1 μ s using "sso" command. Only pulse location moves without change in pulse width of Strobe signal.

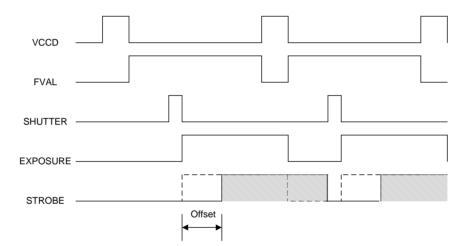


Figure 8.30 Strobe signal in Free-Run

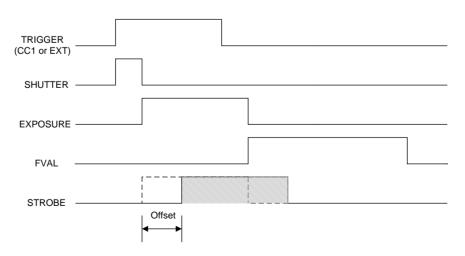


Figure 8.31 Strobe signal in Trigger mode

8.16.2 Strobe Polarity

Polarity can be set for Strobe signal output. "ssp" command is used to set the polarity of Strobe signal.

8.17 Field Upgrade

The Camera provides the function to upgrade Firmware and FGPA logic through Camera Link interface rather than disassemble the camera in the field. See <u>Appendix C</u> for details on how to upgrade.

9 Camera Configuration

9.1 Setup command

All setup in camera is carried out RS-644 serial interface of camera link. With the following communication setting, it can be controlled using terminal or direct control at user application.

- Baud Rate: 19200 bps
- Data Bit: 8 bit
- Parity Bit: No Parity
- Stop bit: 1 stop bit
- Flow control: None

All types of camera setting commands except Firmware Download, requiring massive data transmission are delivered in ASCII command type. All camera setup commands start from user application and the camera returns the response ("OK", "Error" or information) for command. The camera informs the completion of command execution through response with write command, while the camera returns the error response or information with read command.

```
Command format:
<command> <parameter1> <parameter2> <\r>
0~2 parameters follow the command.
Response:
- If execution of write command is successfully completed
OK <\r> <\n>
```

ex) Write command


```
If execution of read command is successfully completed
<parameterl> <\r> <\n>
```

ex) Read command

```
In response to a "get" command the camera will return (in hex value)

Command : 67 65 74 0D

get <\r>
Response : 67 65 74 0D 0A 31 30 30 0D 0A 3E

get<\r><\n> 100<\r><\n> >

echo response prompt
```

If execution of command is not completed
Error : <Error Code> <\r> <\n>

```
Prompt:
After sending response, Camera sends prompt always. '>'is used as prompt.
Types of Error Code
0x80000481 : values of parameter not valid
0x80000482 : number of parameter is not matched
0x80000484 : command that does not exist
0x80000486 : no execution right
```


9.2 Actual Time Applied for Commands

When you execute a command, the actual or real time applied for the command varies depending on the type of the command and operating status of the camera.

All commands except Set Exposure Time ('set') command are applied to change the settings as illustrated below, on the rising edge of a VCCD signal before starting readout process.

When you execute a 'set' command, the exposure time setting will be changed at the starting of the exposure.

In the Trigger mode, you must execute commands before applying trigger signals in order to synchronize image outputs with the commands.

In the Free-Run mode, even if you execute a command, you may acquire up to two images without applying the command. This is true because it is hard to verify the current operating status of the camera in the Free-Run mode.

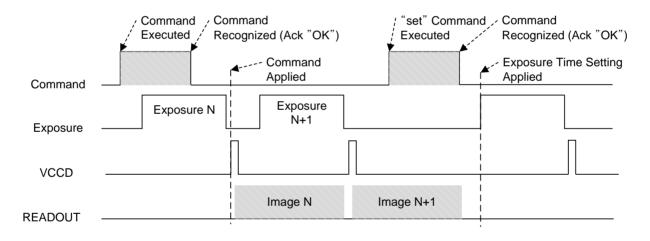


Figure 9.1 Actual Time Applied for Commands

9.3 Parameter Storage Space

The camera has 3 non-volatile storage space used for parameter storage and 1 volatile work space that is applied to actual camera operation. 3 storage space is divided into Factory Space that contain basic value at the factory, and 2 user space(User Space 1, User Space 2) that can save parameter value temporarily set by the user. User space can be read and written, but Factory space can be read only.

At camera booting, setting value in one of 3 storage spaces is copied to work space according to Config Initialization value and value of the space is used for camera setting. Since values in work space is valid only while the power is on, it should be copied to user space 1 or user space 2 using "sct" command.

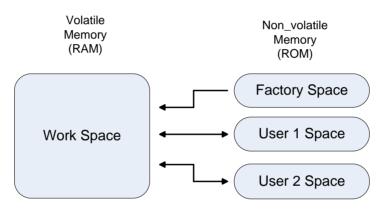


Figure 9.2 Parameter Area

Factory Setting

List	Value	Command
Data Bits	12	sdb 12
Trigger Mode	freerun	stm 0
Readout Mode	normal	srm 0
Exposure Time	10ms	set 10000
Exposure Source	program	ses 0
Trigger Source	CC1	sts 1
Trigger Polarity	Active High	stp 1
Analog Gain	0	sag 0 0
Analog Offset	0	sao 0 0
Defect Correction	ON	sdc 1
Pixel Clock Speed (VP-16M)	1 (40 _{MHz})	sps 1
Target Temperature	5 (Celsius)	stt 5

9.4 Command List

Command	Syntax	Value Returned	Description
Help	h	String	Displays a list of all commands
			0 : Nomal Mode
Set Read-Out Mode	srm 0 1 2	ок	1 : AOI(Area Of Interest) Mode (AOI area is
Get Read-Out Mode	grm	0 1 2	set using "sha" and "sva" commands)
Get Read-Out mode	giin		2 : Binning(2 or 4) Mode
			(Binning Factor is set using "sbf" command)
Set Horizontal Area	sha n1 n2	ОК	n1: Starting point of horizontal direction
Get Horizontal Area	gha	n1 n2	n2 : End point of horizontal direction
Set Vertical Area	sva n1 n2	ОК	n1 : Starting point of vertical direction
Get Vertical Area	gva	n1 n2	n2 : End point of vertical direction
Set Binning Factor	sbf 2 4	ОК	2 : 2 by 2 binning
Get Binning Factor	gti	2 4	4 : 4 by 4 binning
Set Test Image	sti 0 1 2 3 gti	OK 0 1 2 3	0 : Off
Get Test Image			1/2 : Fixed Pattern Image
	90	0111210	3 : Moving Pattern Image
Set Data Bit	sdb 8 10 12	ок	8 : 8 Bit Output
Get Data Bit	gdb	8 10 12	10 : 10 Bit Output
	942	0110112	12 : 12 Bit Output
Set LUT Select	sls 0 1 2	ок	0 : Off
Get LUT Select	gls	0 1 2	1 : LUT1
	3.0	•I.I_	2 : LUT2
Set Asynchronous Reset	sar 0 1	ОК	0 : Inactivate Asynchronous Reset
Get Asynchronous Reset	gar	0 1	1 : Activate Asynchronous Reset
Set Channel Mode	scm 1 2	ОК	1 : 1 Channel Mode
Get Channel Mode	gcm	1 2	2 : 2 Channel Mode
Set Flat-Field Correction	sfc 0 1	ОК	0 : Off
Get Flat-Field Correction	gfc	0 1	1 : Active of Flat-Field Correction
Set Defect Correction	sdc 0 1	ок	0 : Off
Get Defect Correction	gdc	0 1	1 : Active of Defect Correction

Table 9.1 Command List #1

Command	Syntax	Value Returned	Description
Set Image Invert	sii 0 1	ОК	0 : Off
Get Image Invert	gii	0 1	1 : Active of Image Invert
Set Horizontal Flip	shf 0 1	ОК	0 : Off
Get Horizontal Flip	ghf	0 1	1 : Active of Defect Correction
			0 : Free-Run Mode
Set Trigger Mode	otm 011121214	ок	1 : Standard Mode
Get Trigger Mode	stm 0 1 2 3 4		2 : Fast Mode
Get mgger mode	gtm	0 1 2 3 4	3 : Double Mode
			4 : Overlap Mode
Set Exposure Source	ses 0 1	ОК	0 : Program Exposure(by camera)
Get Exposure Source	ges	1 2	1 : Pulse Width (by trigger input signal)
Set Trigger Source	sts 1 2	ОК	1 : CC1 Port Input (Camera Link)
Get Trigger Source	gts	1 2	2 : External Input (External control port)
Set Trigger Polarity	stp 0 1	ОК	0 : Active Low
Get Trigger Polarity	gtp	0 1	1 : Active High
Set Exposure Time	set n	ОК	n : Exposure Time in us
Get Exposure Time	get	n	(Setting range : 10 ~ 7,000,000 us)
Set Strobe Offset	sso n	ОК	n : Strobe Offset Time in us
Get Strobe Offset	gso	n	(Setting range : 0 ~ 10,000 us)
Set Strobe Polarity	ssp 0 1	ок	0 : Active Low
Get Strobe Polarity	gsp	0 1	1 : Active High
Set Analog Gain	sag n	ОК	n :Analog Gain Parameter
Get Analog Gain	gag	n	(Setting Range : 0 ~ 899)
Set Analog Offset	sao n	ОК	n :Analog Gain Parameter
Get Analog Offset	gao	Ν	(Setting Range : 0 ~ 255)
Set Trigger Polarity	stp 0 1	ОК	0 : Active High
Get Trigger Polarity	gtp	0 1	1 : Active Low
Generate Flat Field Data	gfd	ОК	Operate Flat Field Generator
Save Flat Field Data	sfd	ОК	Save Flat Field Data
Load Flat Field Data	lfd	OK	Load Flat Field Data

 Table 9.2
 Command List #2

Command	Syntax	Value Returned	Description
Set Flat Field Iteration	sfi n	ОК	n : (2 ^ n) image acquisitions
Get Flat Field Iteration	gfi	n	(Setting Range : 0 ~ 4)
Set Flat Field Offset	sfo n	ОК	n : Flat Field Target Level
Get Flat Field Offset	gfo	n	(Setting Range : 0 ~ 4095)
Set Dark Signal Non-uniformity	sdsnu 0 1	ОК	0: Disable DSNU
Get Dark Signal Non-uniformity	gdsnu	0 1	1: Enable DSNU
			0 : Load from Factory Setting
Load Config From	lcf 0 1 2	ОК	1 : Load from User 1 Setting
			2 : Load from User 2 Setting
			0 : Save to User 0 Setting(inactive)
Save Config To	sct 1 2	ОК	1 : Save to User 1 Setting
			2 : Save to User 2 Setting
Set Config Initialization	sci 0 1 2	ок	0 : Load from Factory Setting when initializing
Get Config Initialization		0K 0 1 2	1 : Load from User 1 Setting when initializing
	gci	0112	2 : Load from User 2 Setting when initializing
Get MCU Version	gmv	String	Displays MCU Version
Get Model Number	gmn	String	Displays Camera Model Number
Get FPGA Version	gfv	String	Displays FPGA Version
Get Serial Number	gsn	String	Display Serial Number
Get Current Temperature	gct	String	Display Temperature Value
Get Sensor Temperature	gst	String	Display CCD Sensor Temperature Value
Set Target Temperature	stt n	ОК	n : CCD Sensor target Temperature Value
Get Target Temperature	gtt	n	
Set Pclk Selection	sps 0 1	ок	0 : Pixel Clock 30MHz
Get Pclk Selection		0 1	1 : Pixel Clock 40MHz (VP-8/29MC supports
	gps	UI	40 MHz only.)
Set Fan Control	Sft 0 1	ок	Control Fan On/Off
Get Fan Status	gft	0 1	0 : Fan Off
	git		1 : Fan On
Set Peltier Control	stc 0 1	ок	Control Peltier On/Off
Get Peltier Status	gft	0 1	0 : Peltier Off
	git		1 : Peltier On

Table 9.3 Command List #3

10 Configurator GUI

Configurator, a sample application, is provided to control VP Series camera. Configurator provides easy-to-use Graphic User Interface (GUI) for the user while using the commands mentioned previous chapters.

10.1 VP Camera Scan

When you execute the program while the camera is turned on, Camera Scan window appears as shown in the figure below. At this time, the program checks serial port of computer and DLL provided by camera link to scan whether the camera is connected. If there is a camera connected, it displays model name on the screen. If the camera is not properly displayed on the screen, check the connection of cable with power of camera and press refresh button. When you double-click model name displayed on the screen, Configurator is executed and displays current setting value of camera connected.

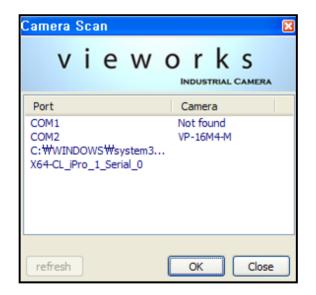


Figure 10.1 Configurator Loading Window

10.2 Menu

10.2.1 File

💿 Vieworks	- VP-29	МС-М		
<u>F</u> ile <u>S</u> tart-Up	<u>T</u> ool <u>A</u>	bout		
Load Setting		From File		
Save Setting	· · ·	From Factory	Space	4871
Defect Pixel	•	From User1 S	pace	
System Upg	rade 🕨	From User2 S	pace	
Exit	1			
() x2	Å			
() x4		6576 (I		(11)
- Test Image		6576 (1	1) × 4384	(V)
 None 				
O Test #1				
O Test #2				
O Test #3	3247			
Data Bit	Channel	LUT	- Image Pro	cessing
🔿 8 вп	🔾 1 Тар	⊙ Off	Flat I	Field Corr.
🔾 10 ВП	💿 2 Тар	O LUT 1		ect Corr.
12 BIT	O 4 Tap	O LUT 2	Inve	rt zontal Flip
				contarr iip
VP-29MC-M			17,1 °C	📢 V2, 1, 19

Figure 10.2 File menu

•	Load Setting:	Loads the camera setting values from the camera memory (i.e., specified as
		Factory, User1 or User2) or user computer (From File).
•	Save Setting:	Saves the camera setting values to the camera memory (i.e., specified as
		User1 or User2) or user computer (To File).
•	Defect Pixel:	Downloads defect information to the camera (Download to Camera) or uploads
		defect information saved in the camera to user computer (Upload to PC).
•	System Upgrade:	Upgrades MCU program or FPGA logic.
	E	

• Exit: Exits Configurator.

.

10.2.2 Start-Up

The user can select the camera setting values to load when the camera is turned on.

🞯 Vi	eworks	- VP-2	9мс-м
<u>F</u> ile	<u>S</u> tart-Up	<u>T</u> ool	<u>About</u>
VIEW	 Factory 	-	LUT FFC TEC
Mo		Setting Setting	0 <> 4871
۲	User 2	Setuny	
0	AOI		
0	Binning	0	
	⊚ x2	*	
	○ x4		
Tes	t Image		6576 (H) × 4384 (V)
\odot	None		
0	Test #1		
0	Test #2		
0	Test #3	3247	
Dat	a Bit —	Channel-	LUT Image Processing
0	8 BIT	🔾 1 Tap	
0	10 BIT	2 Tap	
۲	12 BIT	○ 4 Tap	O LUT 2
		-	
VP-29	MC-M		17,1 °C 🚺 V2,1,19

Figure 10.3 Start-Up Menu

- Factory Setting: Loads the camera setting values from Factory Space.
- User1 Setting: Loads the camera setting values from User1 Space.
- User2 Setting: Loads the camera setting values from User2 Space.

10.2.3 Tool

O Vieworks	- VP-29	МС-М	
<u>F</u> ile <u>S</u> tart-Up	<u>T</u> ool <u>A</u>	<u>\</u> bout	
VIEW MODE/EX	Refres	sh	TEC
Mode Nomal AOI		inal Calibration ry Setting	<> <u></u> 4871
O Binning	High S	Speed	
⊚ x2 ○ x4	* *		
Test Image		6576 (H	i) × 4384 (V)
 None 			
O Test #1			
O Test #2			
O Test #3	3247		
Data Bit	Channel-		Image Processing
○ 8 ВІТ ○ 10 ВІТ	 1 Tap 2 Tap 	⊙ Off ◯ LUT 1	Flat Field Corr.
⊙ 12 ВГГ	🔿 4 Тар	O LUT 2	Horizontal Flip
VP-29MC-M			17,1 °c 🛛 🚺 V2,1,19

Figure 10.4 Tool Menu

- Refresh: Loads and displays the current camera setting values on Configurator.
- Terminal: Displays user commands in Terminal window under GUI. To hide Terminal window, uncheck Terminal by clicking again.
- Color Calibration: Performs Bayer sensor color calibration.
- Factory Setting: Not supported in the user side.
- High Speed: Operates the camera with 40 MHz pixel clock (Only available on VP-16MC).

10.2.4 About

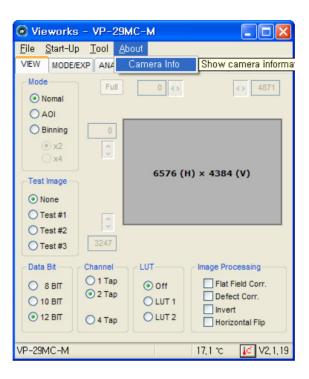


Figure 10.5 About Menu

• Camera Info: Displays camera information (product name, serial number, version, etc).

10.3 Tab

10.3.1 VIEW Tab

VIEW tab allows the user to set the camera readout mode, test image mode, data bit, channel, LUT, image processing, etc.

Vieworks - VP-29MC-M5							
<u>File</u> Start-Up <u>T</u> ool <u>A</u> bout							
VIEW MODE/EXP ANALOG LUT FFC TEC							
Mode F. 0						6575	
No No	omal						
() A	01						
🔘 Bi	nning	0					
) x 2	A V					
C) x4						
- Test Ir	mage		65)	76 (H)	× 4384	(V)	
No	ine						
🔘 Te	st #1	<u> </u>					
🔘 Te	st #2						
🔘 Te	st #3	4383					
- Data B	Bit C	hannel	LUT		Image Pro	cessing	
8	BII) 1 Tap	Off		📃 Flat I	Field Corr.	
10	вп) 2 Тар	© LU	F 1		ect Corr.	
12	вп	🖱 4 Tap	© LU	r 2	DSN	-	
VP-29M	C-M5			3	39.9 °C	🚺 V2.2.	10.1

Figure 10.6 VIEW Tab

Selects readout mode. If AOI is selected, AOI setting area is activated Mode: and AOI can be set by entering desired values. If Binning is selected, ×2, ×4 option buttons are activated. Test Image: Selects whether to apply test image and type of test image. . Data Bit: Selects width of data output. . Channel: Selects channel mode. • LUT: Selects whether to apply LUT and type of LUT. • Sets Flat Field Correction, Defect Correction, Image Invert, Horizontal Flip • Imaging Processing: (VP-16MC Only) or DSNU (VP-8MC/29MC Only) functions On or Off.

10.3.2 MODE/EXP Tab

MODE/EXP tab allows the user to select trigger mode, exposure time and strobe. All scroll bars are controllable with the mouse wheel scroll.

🙆 Vieworks -	VP-29MC-M	
<u>F</u> ile <u>S</u> tart-Up	<u>T</u> ool <u>A</u> bout	
VIEW MODE/EXP	ANALOG LUT FFC TEC	
Trigger Mode	Exposure Source	Polarity
Free-Run	Pulse Width OC1	Active Low
 Standard 	O Program O Ext.	O Active High
O Fast		
ODouble		
O Overlap		
- Exposure Time		
		10000 😂
1. A.	a Yara al	
10 1	Ims 100 ms 7 s	10.00 ms
Strobe Offset		- Strobe Polarity
0	0 🗘	O Active Low
	Dous 10ms 0us	 Active High
VP-29MC-M	17,1 °c	📢 V2, 1, 19

Figure 10.7 MODE/EXP Tab

- Trigger Mode: Selects trigger mode. Once a mode has been selected, related selections will be activated.
- Exposure: Selects exposure source.
- Source: Selects trigger source.
- Polarity: Selects polarity of trigger input.
- Exposure Time: Sets exposure time when trigger mode is set with Free-Run mode or when Exposure is set with Program.
- Strobe Offset: Sets strobe offset.
- Strobe Polarity: Sets the polarity of strobe output signal.

10.3.3 ANALOG Tab

ANALOG tab allows the user to set gain and offset settings of the image. All scroll bars are controllable with the mouse wheel scroll.

💿 Vieworks - VP-29MC-M
<u>File Start-Up Tool About</u>
VIEW MODE/EXP ANALOG LUT FFC TEC
Analog Gain
· · · · · · · · · · · · · · · · · · ·
0 340 680 899
0 12 24 32 [dB]
Right-Top Left-Bottom Right-Bottom
Fine Adjustment
Auto Adjustment
Analog Offset
0 0
0 127 255
Fine Adjustment
Left-Top Right- Top Left-Bottom Right-Bottom
VP-29MC-M 17,1 °C 🚺 V2,1,19

Figure 10.8 ANALOG Tab

Analog Gain: Sets gain value of each channel. Auto Adjustment will be activated after checking
 Fine Adjustment and compensates Tap differences automatically. Fine Adjustment of
 Right-Top, Left-Bottom and Right-Bottom will be affected based on Left-Top.

After clicking the **Auto Adjustment** button, at least one or more images must be captured by the camera.

Analog Offset: Sets offset values of each channel.

10.3.4 LUT Tab

LUT tab allows the user to download LUT data. See <u>Appendix B</u> for more details on LUT Download.

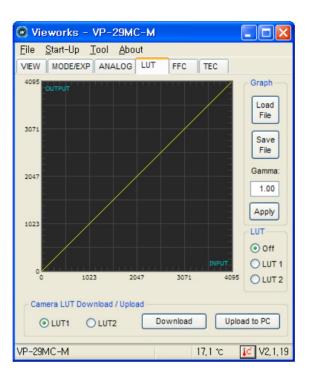


Figure 10.9 LUT Tab

Graph:

Loads LUT data from the user computer or sets Gamma value to be applied while using Gamma curve.

Camera LUT Download / Upload: Downloads LUT data to camera from the user computer (Download) or uploads LUT data saved in the camera to the user computer (Upload to PC).

10.3.5 FFC Tab

FFC tab allows the user to set Flat Field Correction settings. All scroll bars are controllable with the mouse wheel scroll.

🞯 Vieworks - VP-29MC-M	
<u>F</u> ile <u>S</u> tart-Up <u>T</u> ool <u>A</u> bout	
VIEW MODE/EXP ANALOG LUT	FFC TEC
FFC Data	Flash Memory
Number of acquisition frame	Load from Flash Save to Flash
FFC Data Download / Upload	
Download to camera	Upload to PC
FFC Offset Level	
· · · · · · · · · · · · · · · · · · ·	2047 🌲
0 2047	4095
VP-29MC-M	17,1 °C 🚺 V2,1,19

Figure 10.10 FFC Tab

- FFC data: Generates the FF data to be used for correction and sets how many images will be used for the generation.
 Flash Memory: Saves the generated FF data to Flash in order to reuse in the future or retrieves the saved FF data.
 FFC Data Download / Upload: Downloads FFC Data from the user computer (Download to camera) or uploads FFC Data to the user computer (Upload to PC).
- FFC Offset Level: Sets the offset value of the image after Flat Field Correction is applied.

TEC Tab 10.3.6

TEC Tab allows the user to control target temperature of CCD Sensor.

Vieworks - VP-29MC-M	
<u>F</u> ile <u>S</u> tart-Up <u>T</u> ool <u>A</u> bout	
VIEW MODE/EXP ANALOG LUT FFC TEC	
Peltier / TEC Control	
CCD Target Temperature	
5 °C (Range:-10 ~ 50 °C)	
CCD Temperature	
Get CCD Temperature 14.71	
Fan Control Peltier Control	
⊙ On ◯ Off ⊙ On ◯ Off	
>> stc 1 OK 17,1 ℃	V2, 1, 19

Figure 10.11 TEC Tab

- CCD Target Temperature: Sets target temperature of CCD Sensor. ٠
- CCD Temperature: •

Displays CCD Sensor temperature value. Turns Fan On or Off.

- Fan Control: • Turns Peltier On or Off. •
- Peltier Control:

Appendix A Defective Pixel Map Download

- 1. Create the Defective Pixel Map data in Microsoft Excel format as shown in the left picture below and save as a CSV file (*.csv). The picture in the right shows the created Excel file opened in Notepad. The following rules need to be applied when creating the file.
- Lines beginning with ':' or '—' are treated as notes.
- Each row is produced in the order of the horizontal and vertical coordinate values.
- The input sequence of pixel is irrelevant.

🖾 Mi	crosoft Exc	el - defecti)ata.c:				
:8) :	파일(<u>F</u>) 편집((<u>E</u>) 보기(⊻)	삽입(]				
10	🛎 🖬 🖪 🔒	I 🖪 🛕 💝	1 12				
1	<u>b</u> b 2 👁	000	2				
	L22	-	fse				
	A	В	C				
1	:comment li	ne					
2	commen	t line					
3	H						
4	2011	3					
5	178	7					
6	52	8					
7	699	8					
8	268	10					
9	1112	10					
10	1713	12					
11	608	16					
12							
10							

Eile Edit Format View Help :comment line, comment line, H, Y 2011,3 178,7 52,8 699,8 268,10 1112,10 1713,12 608,16		defe	ctDataa	a.csv	- Notepad
comment line, H, Y 2011,3 178,7 52,8 699,8 268,10 1112,10 1713,12	Eile	<u>E</u> dit	F <u>o</u> rmat	⊻iew	Help
	 20 17 52 69 26 11 17	comi H, ' 11,3 8,7 ,8 9,8 9,8 8,10 12,1 13,1	ment 1 Y Ø		

2. Select File > Defect Pixel > Download to Camera on Configurator.

Start-Up	Tool About		
oad Setting. Save Setting		G LUT FFC	TEC 4871
Defect Pixel		wnload to Camer	a 9071
5ystem Upgr	rade 🕨 Upl	load to PC	_
Exit	0		
⊖x2 ⊚x4	()		
est Image		4872 (H) × 3248 (¥)
 None 			
) Test #1	3		
-	3247		
) Test #2			
) Test #2) Test #3	3247		
Č	Channel		Image Processing
) Test #3	Channel O 1 Tap	LUT	Image Processing
) Test #3 Data Bit	Channel	and the second s	a substantia a subst

3. Search and select the created file and click **Open**.

Open		? 🗙
Look jn:	🕞 Upgrade 💽 🔶 🖽 🕬	
My Recent Documents Desktop	⊠_defect,csv	
My Documents		
My Computer		
My Network Places	File name: defect, csv Files of type: CSV files (*, csv)	<u>O</u> pen Cancel

4. Configurator starts downloading defective pixel map data to the camera and downloading status is displayed at the bottom of the window.

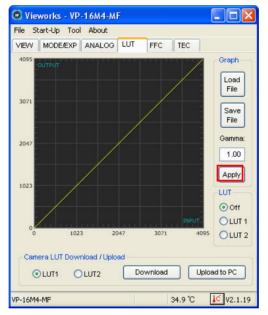
🙆 Vieworks -	VP-16M4-M	F	
File Start-Up 1	Fool About		
VIEW MODE/E)	XP ANALOG	LUT FFC	TEC
Mode	Full	0 0	4871
Nomal			
O AOI	_		
OBinning	0		
Ox2	* *		
• ×4	in the second se	1070 (1)	
Test Image		4872 (H) × 3248 (¥)
 None 			
O Test #1			
O Test #2			
◯ Test #3	3247		
Data Bit	Channel	LUT	Image Processing
🔿 в віт	O1 Tap	⊙ Off	Flat Field Corr.
010 BIT	💽 2 Tap	OLUT 1	Defect Corr.
● 12 BIT		OLUT 2	Invert Thorizontal Flip
		23 %	34 Cancel V2.1.19

5. Once the download has been completed, the saving process will begin. During the saving process, make sure not to disconnect the power cord.

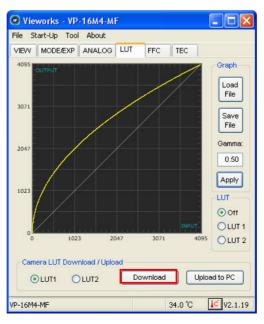
🙆 Vieworks -	VP-16M4-M	F	
File Start-Up	Fool About		
VIEW MODE/E	XP ANALOG	LUT FFC	TEC
Mode	Full	0 0	4871
💿 Nomal			
O AOI	_		
OBinning	0		
Ox2	**		
• ×4	Part of the second s	1070 (
Test Image		4872 (1	H) × 3248 (V)
None			
O Test #1			
O Test #2			
O Test #3	3247		
Data Bit	Channel	LUT	Image Processing
🔿 в віт	O1 Tap	⊙ Off	Flat Field Corr.
010 BIT	💽 2 Tap	OLUT 1	Defect Corr.
● 12 BIT		OLUT 2	Nvert Horizontal Flip
			34 Wait. V2.1.19

6. Once all the processes have been completed, **Download completed** message will appear at the bottom of the window.

🙆 Viev	vorks - VP	-16M4-M	F		
File Sta	art-Up Tool	About			
VIEW	MODE/EXP	ANALOG	LUT FFC	TEC	
Mode No Ac Bit	ы _	Full	0 ()	_	4871
			4872 (1	H) × 3248	3 (V)
 ○ Te ○ Te ○ Te 	st #1 st #2	3247	-	-	
Data E 0 8 010 012	віт С	annel)1 Tap)2 Tap	Off LUT 1 LUT 2	Defe	Field Corr. ect Corr.
Download	d completed			34.2 °C	V2.1.19

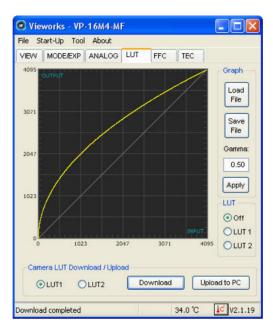


Appendix B LUT Download

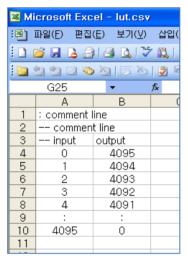

LUT data can be created in two ways; by adjusting the gamma values on the gamma graph provided in the program and then downloading the data or by opening a CSV file (*.csv) and then downloading the data.

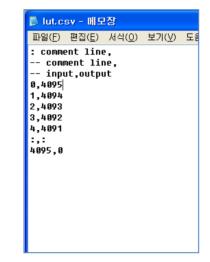
B.1 Gamma Graph Download

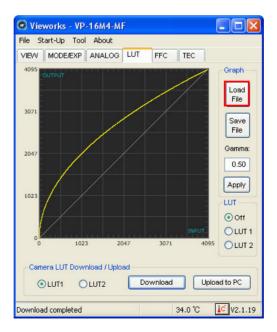
1. Set a desired gamma value on LUT tab and click Apply.


2. Select LUT1 or LUT2 as a location to store the data and click LUT Download.

Page 68 of 76


3. Once the download has been completed, **Download completed** message will appear at the bottom of the window.




B.2 CSV File Download

- 1. Create the LUT table in Microsoft Excel format as shown in the left picture below and save as a CSV file (*.csv). The picture in the right shows the created file opened in Notepad. Once the file has been created completely, change the .csv file extension to .lut. The following rules need to be applied when creating the file.
- Lines beginning with ':' or '—' are treated as notes.
- Based on the input values, make sure to record from 0 to 4095.

2. Click Load File on LUT tab.

3. Search and select the created LUT file and click **Open**.

Open					? 🗙
Look jn:	🚞 Upgrade		•	+ 🗈 📸 🖬 -	
My Recent Documents Desktop	₪ lut, lut				
My Documents					
My Computer					
					
My Network Places	File <u>n</u> ame: Files of <u>t</u> ype:	lut,lut LUT files (*,lut)			<u>O</u> pen Cancel

4. Select LUT1 or LUT2 as location to store the data and click **Download**. The subsequent processes are identical to those of Gamma Graph Download.

Appendix C Field Upgrade

C.1 MCU

1. Select File > System Upgrade > MCU Upgrade on Configurator.

ile Start-Up Tool A	bout
Save Setting 🔹 🕨	ALOG LUT FFC TEC
Defect Pixel	ull 0 🐽 4871
System Upgrade 🔸	MCU Upgrade
Exit	FPGA Upgrade
 ×2 ×4 Test image None Test #1 Test #2 Test #2 Test #3 324 	4872 (H) × 3248 (V)
O lest #3	el LUT Image Processing

2. Search and select the provided MCU upgrade file (*.srec) then click **Open**.

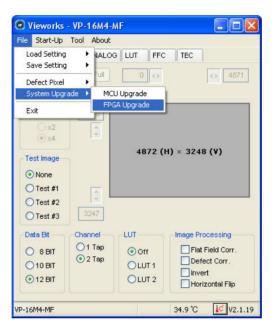
Open					? 🗙
Look jn:	🗀 Upgrade		•	+ 🗈 💣 🎟•	
My Recent Documents Desktop My Documents My Computer	mcu, srec				
My Network	File <u>n</u> ame:	mcu, srec			<u>O</u> pen
Places	Files of <u>type</u> :	File(*,srec)			Cancel

3. Configurator starts downloading MCU upgrade file to the camera and downloading status is displayed at the bottom of the window. If you want to cancel the upgrade process, click **Cancel**. This process requires several minutes to complete.

💿 Vieworks - VP-16M4-MF 📃 🗖 🔀					
File St	art-Up To	ol About			
VIEW	MODEÆX	ANALOG	LUT FFC	TEC	
Mode		Full	0 0	0	4871
N	omal			100	
O A	0	_			
OBi	nning	0			
	×2	*			
) x4		1072 (1	I) × 3248 (V)	
Test I	mage		4072 (F	1) × 3248 (¥,	
💿 No	ne				
OTe	st #1				
OTe	st #2				
OTe	st #3	3247			
Data I	Bit	Channel	LUT	-Image Process	sing
08	DII	🔾 1 Tap	⊙ Off	Flat Field	Corr.
010	BIT	⊙ 2 Tap	OLUT 1	Defect Co	orr.
⊙ 12	віт		OLUT 2	Invert	d Elin
1					
			23 %	34 Cancel	V2.1.19

4. Once the download has been completed, the saving process will begin. During the saving process, the camera cannot be restored if a power failure occurs. Make sure that the power connection is secured.

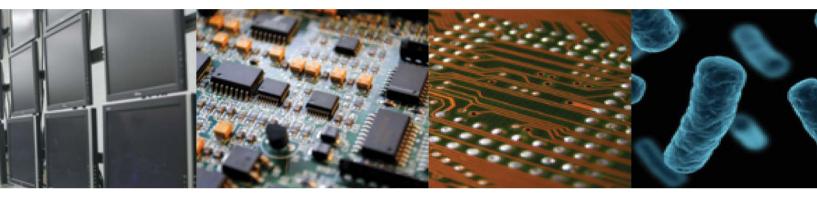
👁 Vieworks - VP-16M4-MF						
File Start-Up Tool About						
VIEW	MODE/EXP	ANALOG	LUT FFG	C TEC		
Mode No No A		Full	0		4871	
Ові	nning	0				
Test I	one est #1 est #2	3247	4872 (H) × 324	B (V)	
O Te Data I ○ 8 ○ 10 ○ 12	BIT BIT	annel)1 Tap)2 Tap	Off CLUT 1 CLUT 2	Flat	ocessing Field Corr. ect Corr. ert izontal Flip	
34 Wait v2.1.19						


5. Once all the processes have been completed, turn the power off and turn it back on again. Select Tool > Terminal and enter the "gmv" command to confirm the version. Or, select About > Camera Info to confirm the MCU version.

About 🔀
vieworks INDUSTRIAL CAMERA
Camera Information
Camera Name : VP-16M4-MF
Serial Number: 07PAJH-F003
FPGA Version: 02.02
MCU Version: 01.08 cooling test7
Copyright (c) Vieworks. 2011 All rights reserved. Configurator Version : V2.1.19

C.2 FPGA

1. Select File > System Upgrade > FPGA Upgrade on Configurator.



2. Search and select the provided FPGA upgrade file (*.bin) and click **Open**.

Open					? 🗙
Look jn:	🗀 Upgrade		•	+ 🗈 💣 🎟 -	
My Recent Documents Desktop My Documents	∲*fpga.bin				
My Network Places	File <u>n</u> ame: Files of <u>typ</u> e:	fpga,bin Binary File(*,bin)		•	<u>O</u> pen Cancel

Page 75 of 76

3. The subsequent processes are identical to those of MCU upgrade.

Vieworks Co., Ltd.

#601-610 Suntechcity II, 307-2 Sangdaewon-dong,

Jungwon-gu, Seongnam-si, Gyeonggi-do, 462-736 South Korea Tel: +82-70-7011-6161 Fax: +82-31-737-4936

machinevision.vieworks.com. vieworks@vieworks.com.